中国激光, 2021, 48 (8): 0802006, 网络出版: 2021-03-23   

飞秒激光辐照连接金属氧化物纳米线及电性能调控 下载: 1108次

Nanojoining and Electrical Performance Modulation of Metal Oxide Nanowires Based on Femtosecond Laser Irradiation
作者单位
1 太原理工大学材料科学与工程学院, 山西 太原 030024
2 清华大学机械工程系, 北京 100084
摘要
采用干法转移方法制备Au电极-CuO/ZnO纳米线异质结构,通过飞秒激光辐照,基于表面等离子激元的能量局域化输入实现了异质结构的纳米连接,改善了异质结构界面的接触状态,促进了载流子传输通道的导通。辐照前后的电学测试结果表明,激光处理后p型和n型纳米线场效应管的背栅调控性能有明显提升。当栅极电压达到±20 V后,二者的电流有明显的夹止趋势。此外,基于CuO和ZnO纳米线的p型和n型场效应管特性,制备了一种p-CuO/n-ZnO纳米线半导体倒相器。结果表明,激光辐照后的倒相器具有稳定的电压调控能力,为自下而上的微纳电子器件组装提供了新思路。
Abstract

Objective As the most common structural unit in electronic devices, the interface contact state of metal-semiconductor heterostructures plays an important role in the performance of electronic devices. Some traditional nanojoining technologies, such as ultrasonic nanojoining, joule heating, and ion and electron beam irradiation, have been used to improve the interface contact state of metal-semiconductor heterostructures. However, these methods easily cause additional damage to nanomaterials and require a complex processing environment, which poses a great challenge to the control of energy inputs. Femtosecond lasers with short pulse time and high peak intensity, as a method of nanojoining, are suitable to process nanomaterials with high melting points and damage thresholds. In recent years, most research studies have focused on the fabrication of metal-semiconductor heterostructure devices using femtosecond laser technology, but the material systems need to be broadened. In this study, the dry transfer method is used to fabricate Au electrode-CuO/ZnO nanowires (NWs) heterostructures and a semiconductor inverter based on p-type CuO NWs and n-type ZnO NWs. The nanojoining of the heterostructures based on the localized energy input of femtosecond lasers caused by the surface plasmon effect is successfully realized. The laser-treated semiconductor inverter had obtained stable voltage regulation capability based on the p-type and n-type field-effect transistor characteristics of CuO and ZnO NWs. This study provides a new idea for the top-down assembly of micro/nanoelectronic devices. We hope that our design provides a new idea for the top-down assembly of micro/nanoelectronic devices.

Methods CuO nanowires (NWs) were synthesized by thermal oxidation at 400 ℃ for 4 h; however, ZnO NWs and lithography electrodes were purchased directly from XFNANO Materials. Au electrode-CuO/ZnO NWs heterostructures and a semiconductor inverter based on p-type CuO NWs and n-type ZnO NWs were fabricated using a continuous dry transfer method. The nanojoining of the heterostructures was achieved using femtosecond laser irradiation (50 fs pulse duration, 800 nm wavelength, and 1 kHz frequency). The surface morphology and crystalline structure of nanowires were analyzed using scanning electron microscopy (SEM, Zeiss Supra 55) and X-ray diffraction (XRD, Bruker D8). The electrical characterization of the heterostructures and the semiconductor inverter in a three-terminal configuration were examined by a probe station (Keithley 2636B). In addition, the commercial finite element analysis (COMSOL Multiphysics 5.4) was used to simulate the electric ?eld distribution of the heterostructures under linearly polarized Gauss light to further elucidate the interfacial modification mechanism of Au electrode-CuO/ZnO under femtosecond lasers.

Results and Discussions The stable welded joints of the Au electrode-CuO/ZnO NWs heterostructures are obtained by femtosecond laser irradiation with a power intensity of 12.9 mJ/cm 2 and 20.2 mJ/cm 2, respectively. The nanowires form a degree of wetting angle on the surface of the Au electrode (the red dotted line area), and the surface organic matter is effectively removed, greatly improving the interface contact state (Fig. 4). The simulation results show that the enhancement region with a high electric field intensity mainly occurred in the interface between the Au electrode and nanowires on both sides, while the suspended nanowires in the middle have lower electric field intensity (Fig. 5). The strong surface plasmon effect due to femtosecond laser irradiation confines the energy to the interface of the heterostructures, promoting the formation of low damage welded joints. Compared with the electrical measurement results of pristine and laser-treated heterostructures, the voltage dependence of the p-type and n-type NW field-effect transistors (FETs) irradiated by femtosecond lasers is significantly improved. When the gate voltage (VG) reaches +20 V and -20 V, there is an obvious trend of current suppression for CuO and ZnO NWs, respectively (Fig. 6). In addition, the semiconductor inverter is fabricated based on the p-type and n-type FET characteristics of the CuO and ZnO NWs (Fig. 7). The laser-treated inverter had obtained stable voltage regulation capability, with a full voltage output swing of ~79.5% (Fig. 8).

Conclusions In this study, the Au electrode-CuO/ZnO NWs heterostructures are successfully fabricated through the dry transfer method. The strong plasmon interaction of metal-semiconductor heterostructural interface induced by femtosecond laser irradiation is demonstrated using COMSOL multi-physical field simulation to elucidate nanojoining mechanism. The laser energy is effectively limited in the interface area between the Au electrode and nanowires, achieving a low damage nanojoining of the heterogeneous materials. The device units of the two kinds of nanowire heterostructures have obvious electrical characteristics of p-type and n-type FETs with a great back gate control performance. The laser-treated semiconductor inverter had obtained stable voltage regulation capability based on p-type CuO NWs and n-type ZnO NWs, with a full voltage output swing of ~79.5%. The fabrication of Au electrode-CuO/ZnO nanowires heterostructures through dry transfer and femtosecond laser irradiation extends the material systems of metal-semiconductor heterostructures. In the end, we hope that the design of the inverter provides a new idea for the top-down assembly of micro/nanoelectronic devices.

1 引言

随着微电子领域的迅猛发展,以半导体为基础的芯片产业对电子器件的性能提出了更高的要求,器件逐渐偏向小尺度、高集成度以及多功能材料体系发展,材料逐渐进入纳米尺度范围,通过改善结构实现具有复杂纳米结构(跨尺度、维度)的电子器件也成为当前研究的热点[1]

金属-半导体异质结构是电子器件中最常见的结构单元,其界面结合状态对于器件的性能尤为重要[2]。但实际情况中,金属与半导体相互接触时,有机物等杂质会严重影响器件的性能[3]。超声焊[4]、退火法[5]、离子束[6]和电子束[7]等均可被用以改善金属-半导体异质界面的接触状态,但这些方法往往会对纳米材料造成过损伤,加工环境也比较复杂。因此,在异质材料界面结构连接时,不仅要避免纳米材料的过损伤,还需在一定程度上去除杂质、有机物,对能量输入的控制提出了极大的挑战。

飞秒激光作为纳米连接的一种方法,具有脉冲时间短、峰值强度高、与材料相互作用时热量输入少等特点,可适用于高熔点和高损伤阈值纳米材料的加工[8-9]。此外,对于光辐照下的金属-半导体异质界面,表面等离子激元效应的存在使能量输入在异质界面呈周期性热点分布[10]。Lin等[11-12]采用飞秒激光实现了多种金属-半导体异质结构材料体系的界面调控,包括Au电极-TiO2纳米线(NWs)、Ag纳米线-TiO2纳米线,可应用于多级忆阻器等器件。Cui等[13]使用飞秒激光实现了碳纳米管与Ni电极的欧姆接触。Xing等[14]使用飞秒激光实现了Pt电极-TiO2纳米线异质结构的互连,可模拟长时记忆特性的神经网络单元。近年来,采用飞秒激光作为制备和调控金属-半导体异质界面结构器件的方法受到了广泛关注,但材料体系仍有待拓宽。CuO和ZnO纳米线分别作为一种典型的p型和n型半导体,具有优异的电学特性,因此,被广泛应用于多种电子器件,但较大的界面接触电阻严重阻碍了其电学应用。因此,获得稳定的金属电极-CuO/ZnO纳米线互连结构具有重要意义。

本文基于金属-半导体异质结构体系的研究,用干法转移方法构造了Au电极-CuO/ZnO纳米线异质结构,探究了基于飞秒激光辐照的异质结构界面互连行为,并利用多物理场有限元模拟软件(COMSOL Multiphysics 5.4)揭示异质界面的表面等离子激元强化效应,从而解释激光的连接机理。通过对比异质结构辐照前后的电学特性,研究异质结构界面的状态变化对场效应管(FET)器件性能的影响。此外,基于p-CuO和n-ZnO纳米线的FET电流调控特性,制备了一种半导体倒相器,并研究了激光辐照前后该器件的电压调控能力。

2 实验材料及方法

2.1 实验材料

CuO纳米线采用热氧化法合成,首先,将工业纯Cu网用盐酸去除表面的氧化膜后置于管式炉中,在450 ℃氧气环境下保温4 h。然后,将氧化后的Cu网置于装有酒精溶液(纯度大于等于99.7%)的烧杯中,超声振荡10 s后得到CuO纳米线酒精悬浮液。将购买的ZnO纳米线用相同的酒精稀释,得到悬浮液。器件使用的Au电极及基板采用微电子光刻等工艺制备。

2.2 器件制备

采用干法转移方法制备Au电极-纳米线异质结构和倒相器[15-16],其流程如图1所示。具体步骤:1)用移液枪取少量CuO和ZnO纳米线悬浮液分别置于聚二甲基硅氧烷(PDMS)上自然风干;2)利用三轴转移平台在光镜下将目标纳米线与电极相对应,随后将PDMS与电极贴合,在80 ℃温度下保温20 min,PDMS黏性失效,纳米线脱落至电极上;3)多次转移可实现Au电极-纳米线异质结构及倒相器的制备。

图 1. 干法转移方法制备的Au电极-纳米线异质结构

Fig. 1. Au electrode-nanowire heterostructure prepared by dry transfer method

下载图片 查看所有图片

2.3 飞秒激光加工系统

实验用功率为4 W的钛宝石飞秒激光器(美国相干公司)作为光源辐照纳米线与电极,激光器的波长为800 nm,脉冲宽度为50 fs,重复频率为1 kHz。如图2所示,激光器出光后经过电控快门、衰减镜(ND filter)、半波片(λ/2 plate)、偏振片及一系列反射镜进入光学显微镜物镜光阑聚焦,聚焦后的光斑半径约为2 μm。利用电控快门、半波片、偏振片可对激光的加工时间、输出功率、偏振方向等参数进行精确控制,通过CCD相机实现加工过程的可视化操作。

图 2. 飞秒激光加工系统示意图

Fig. 2. Schematic diagram of the femtosecond laser processing system

下载图片 查看所有图片

2.4 器件性能表征

纳米线的形貌用扫描电镜(SEM, Zeiss Supra 55)和光学显微镜(OM)表征。此外,用X射线衍射仪(XRD, Bruker D8)对纳米线进行物相分析,用能谱仪(EDS)探测其表面的化学元素分布,用四探针精密半导体电学测试仪器(Keithley 2636B)测量CuO和ZnO纳米线的FET及倒相器的电学特性。实验用COMSOL Multiphysics 5.4软件表征CuO和ZnO纳米线与Au电极之间的电势场分布,探究飞秒激光对金属-半导体异质界面的修饰机理。多物理场模拟基于射频模块进行建模,入射光的波长为800 nm,初始入射电场强度为1 V/m。

3 分析与讨论

3.1 Au电极-CuO/ZnO纳米线异质结构的界面互连

图3为CuO和ZnO纳米线的SEM形貌图及对应的XRD物相分析结果。可以发现,CuO纳米线均匀生长在Cu网上且呈圆柱形,直径约为120 nm,长度为5~20 μm。ZnO纳米线以六方棱柱为主,直径约为200 nm,长度为10~30 μm,二者均具有较大的纵横比。XRD的分析结果表明,纳米线晶体结构完好,CuO纳米线衍射峰主要为(11-1)和(111)晶面,而ZnO纳米线衍射峰为(100)晶面。CuO纳米线的X射线衍射图谱存在少量的噪声峰,原因是刀片从Cu网上刮取CuO纳米线时会引入少量的Cu杂质。

图 3. 纳米线的表面形貌和物相结构。(a)CuO纳米线的SEM图像;(b)ZnO纳米线的SEM图像;(c)CuO纳米线的X射线衍射图谱;(d)ZnO纳米线的X射线衍射图谱

Fig. 3. Surface morphology and phase structure of the nanowires. (a) SEM image of the CuO nanowires; (b) SEM image of the ZnO nanowires; (c) X-ray diffraction pattern of the CuO nanowires; (d) X-ray diffraction pattern of the ZnO nanowires

下载图片 查看所有图片

Au电极与纳米线异质结构互连属于跨尺度的纳米连接,材料的本征属性和异质结构的几何接触形态会严重影响飞秒激光辐照下界面行为的转变,从而影响异质结构的互连状态[17]图4(a1)和图4(b1)分别为干法转移法制备的Au电极-CuO纳米线与Au电极-ZnO纳米线异质结构,初始状态纳米线与电极接触较差,无润湿现象,且纳米线表面会附着少量有机物等杂质。图4(a2)和图4(b2)分别为采用能量密度为12.9 mJ/cm2和20.2 mJ/cm2的激光辐照Au电极-CuO纳米线和Au电极-ZnO纳米线60 s的接头形貌,可以发现,纳米线在Au电极表面形成一定的润湿铺展(虚线框区域),其与Au电极接触区域产生了熔融现象,且表面有机物被去除,界面接触状态得到了一定的改善。图4(a3)和图4(b3)分别为图4(a2)和图4(b2)中样品倾斜75°后的界面形貌,可以发现,纳米线与电极接触区域润湿状态明显,异质结构的连接界面清晰可见。此外,在半径较大的光斑辐照下,纳米线与硅基板悬空区域没有明显损伤,原因是激光的能量输入因表面等离子激元效应被有效限制在Au电极与纳米线的接触区域。纳米材料在辐照过程中呈窗口加工特性,过高的能量输入会对纳米材料造成损伤。图4(a4)和图4(b4)是将激光能量密度提高至229.2 mJ/cm2时的接头形貌,可以发现,纳米线表面出现明显的径向裂纹损伤,使异质结构失效。因此,控制飞秒激光的能量密度输入区间,可实现小热影响区、低损伤的跨尺度异质结构互连。

图 4. 异质结构在不同激光能量辐照下的接头形貌。(a) Au电极-CuO纳米线异质结构;(b) Au电极-ZnO纳米线异质结构

Fig. 4. Joint morphology of the heterostructure under different laser energy irradiation. (a) Au electrode-CuO nanowire heterostructure; (b) Au electrode-ZnO nanowire heterostructure

下载图片 查看所有图片

激光辐照金属与介电材料界面时,金属表面的自由电子会发生振荡,形成能量分布的热点区域,即表面等离子激元效应[18-19]。为了研究飞秒激光辐照下Au电极-纳米线异质结构的界面电场分布,采用COMSOL Multiphysics 5.4软件依据实际尺度构造了简化的Au电极-纳米线异质结构模型,主要包括两侧的Au电极-纳米线搭接区域和中部的悬空纳米线-空气接触区域,模拟条件为均匀空间电磁场。如图5(a)和图5(b)所示,电场强度E较高的强化区域主要位于两侧Au电极-纳米线搭接区域,界面电场分布呈周期性强化,而中部悬空纳米线场强较低。Au电极-纳米线界面电场强化程度高于Au电极-空气界面,原因是纳米线的介电常数比空气大。其中,箭头为激光极化方向。此外,电极-纳米线结构空间电场能量的分布除了受表面等离子激元效应的影响外,也会受到几何因素的综合影响。对比图5(a)和图5(b)可知,Au电极-ZnO纳米线异质结构的强化电场主要位于异质界面和电极与纳米线接触末端(虚线框区域),而Au电极-CuO纳米线异质结构的强化电场主要位于电极与纳米线接触末端。模型中Au电极-ZnO纳米线异质界面为面接触,而Au电极-CuO纳米线异质界面为线接触,模拟过程不考虑几何结构的时域影响,因此后者的强化效果不明显。图5(c)和图5(d)为纳米线与电极接触一侧沿纳米线轴向(X轴)的归一化电场强度,等离子激元效应和几何效应导致的电场强化效应清晰可见,但热点区域分布间隔存在差距。飞秒激光辐照Au电极-纳米线异质结构时,能量被限制在异质结构的界面区域,形成了周期性分布的能量热点,从而实现Au电极-纳米线异质结构的低损伤互连。

图 5. 激光辐照下的电场强度分布。(a)Au电极-CuO纳米线;(b)Au电极-ZnO纳米线;(c)沿CuO纳米线轴与电极接触面的电场强度;(d)沿ZnO纳米线轴与电极接触面的电场强度

Fig. 5. Electric field intensity distribution under laser irradiation. (a) Au electrode-CuO nanowires; (b) Au electrode-ZnO nanowires; (c) electric field strength along the CuO nanowire axis and electrode contact surface; (d) electric field strength along the ZnO nanowire axis and electrode contact surface

下载图片 查看所有图片

3.2 Au电极-CuO/ZnO纳米线异质连接结构的电学特性

干法转移方法制备的Au电极-纳米线异质结构受飞秒激光辐照后,其界面接触状态会发生明显改变,进而影响其电学特性。图6为激光辐照前后CuO和ZnO纳米线FET器件的电学响应特性,可以发现,初始状态并未呈现出任何电流响应,纳米线FET基本无背栅调控能力,原因是干法转移方法制备异质结构过程中使用的PDMS热牺牲层会在异质界面引入部分杂质。此外,机械结合形成的范德华接触也会影响电荷载流子的有效传输,从而阻碍内部载流子的导通。异质结构经过飞秒激光辐照后,表面等离子激元效应导致的能量可控输入使异质界面发生了明显的熔融现象。杂质和范德华接触电势差的去除大大改善了界面的接触状态,降低了界面势垒,增强了界面处的电学传导。在5 V扫描电压下,流过CuO和ZnO纳米线的电流(Ids)分别约为7 nA和40 nA。栅极电压在-20~20 V扫描时,CuO和ZnO纳米线的电流随栅极电压的变化趋势比较明显,其p型和n型FET调控性能也比较明显,如图6(a)和图6(b)所示。在源漏电压(Vds)为2.5 V时,CuO纳米线在栅极电压(VG)达到20 V后有明显的夹止趋势,而ZnO纳米线在栅极电压达到-20 V后有夹止趋势,如图6(c)和图6(d)所示。

图 6. 纳米线与Au电极连接前后的电学响应。(a)、(c)激光辐照前后CuO纳米线FET器件的电流输出特性和转移特性;(b)、(d)激光辐照前后ZnO纳米线FET器件的电流输出特性和转移特性

Fig. 6. Electrical response before and after the nanowire is bonded to the Au electrode. (a),(c) Current output characteristics and transfer characteristics of the CuO nanowire FET devices before and after laser irradiation; (b),(d) current output characteristics and transfer characteristics of the ZnO nanowire FET devices before and after laser irradiation characteristic

下载图片 查看所有图片

3.3 p-CuO/n-ZnO纳米线倒相器的飞秒激光纳米连接

CuO和ZnO纳米线作为一种典型的半导体材料,具有优异的电学性能,被广泛应用于多种电子器件中[20]。基于p-CuO和n-ZnO纳米线FET的电学特性可知,其漏源电流随栅极电压的变化趋势不同,实验采用干法转移方法制备了p-CuO/n-ZnO纳米线半导体倒相器,器件模型如图7(a)所示。两个不同类型的FET共用同一个背栅作为电压输入端,中间电极为电压的输出端,器件采用电压调控电压的方式,电路原理如图7(b)所示,其中,Vin为输入电压,Vout为输出电压,VDD为电源电压,VGND表示接地。图7(c)为器件在光学显微镜明场和暗场下的纳米线与Au电极搭接结构,p-CuO和n-ZnO纳米线FET的形貌和元素分布如图7(d)和图7(e)所示,可以发现,两种纳米线的形貌均相对完好。

图 7. 基于p-CuO/n-ZnO纳米线的半导体倒相器。(a)倒相器结构示意图;(b)电路原理图;(c) OM图像;(d) p-CuO纳米线FET的SEM图像及EDS表征;(e) n-ZnO纳米线FET的SEM图像及EDS表征

Fig. 7. Semiconductor inverter based on p-CuO/n-ZnO nanowires. (a) Schematic structure of the inverter; (b) schematic circuit diagram; (c) OM image; (d) SEM image and EDS characterization of the p-CuO nanowire FET devices; (e) SEM image and EDS characterization of the n-ZnO nanowire FET devices

下载图片 查看所有图片

图8为干法转移方法制备p-CuO/n-ZnO纳米线半导体倒相器的电学响应,可以发现,初始状态的倒相器没有任何电压调控性能,原因是两端p-CuO和n-ZnO纳米线与Au电极接触状态较差,杂质和范德华接触电势差影响了载流子的传输,整个电路基本无电流通过,纳米线没有调控能力,进而影响了器件的整体性能,仅在测试过程中出现击穿现象时,电压有明显下降,如图8(a)所示。采用飞秒激光处理p-CuO/n-ZnO纳米线与Au电极的搭接区域后,跨尺度互连结构的形成改善了界面的接触状态,载流子传输通道增多,纳米线的p型和n型电流调控特性明显。图8(e)和图8(f)对应纳米线在不同栅极电压下的能带结构,其中,EF为费米能级,EC为导带,EV为价带。可以发现,在栅极电压为20 V时,p-CuO纳米线一侧势垒较高,载流子难以通过,电路趋于夹止状态;而n-ZnO纳米线一侧势垒低,载流子易传输,电路为导通状态;反之,栅极电压为-20 V时,p-CuO纳米线与Au电极界面势垒降低,电路导通,n-ZnO纳米线电路趋于夹止,从而实现对输出电压的有效调控。图8(b)和图8(c)为飞秒激光处理后器件的电压和电流传输曲线,可以发现,整体电路有明显的电流通过,栅极电压大于-33 V时,输出电压开始下降,器件获得稳定的电压调控能力。此外,随着电源电压的增加,整体电路中的电流也逐渐增加,电压调控幅度有所提高,调控幅度最大为79.5%(VDD=15 V),如图8(d)所示。纳米线倒相器的制备,为更小尺度、更高集成度微纳器件自下而上的组装制造提供了新思路。

图 8. 倒相器的电学响应特征及能带结构。(a)初始状态倒相器的电压和电流传输曲线;(b)~(c)激光处理后倒相器的电压和电流传输曲线;(d)不同电源电压下倒相器的电压调控幅度变化;(e)~(f)p-CuO和n-ZnO纳米线FET在不同栅极电压下的能带结构

Fig. 8. Electrical response characteristics and energy band structure of the inverter. (a) Voltage and current transfer curve of the inverter in the initial state; (b)--(c) voltage and current transfer curves of the inverter after laser processing; (d) voltage regulation range of the inverter under different applied voltages; (e)--(f) energy band structure of p-CuO and n-ZnO nanowire FET under different gate voltages

下载图片 查看所有图片

4 结论

采用干法转移方法成功制备出了Au电极-CuO/ZnO纳米线异质结构,并利用COMSOL Multiphysics 5.4软件揭示了飞秒激光辐照下金属-半导体异质界面产生的表面等离子激元效应。实验结果表明,能量被有效限制在Au电极与纳米线接触区域,从而实现Au电极与CuO/ZnO纳米线的低损伤连接。两种纳米线互连结构的器件单元分别具有明显的p型和n型FET电学特性,背栅调控性能明显。基于此制备了一种p-CuO/n-ZnO纳米线半导体倒相器,实验结果表明,激光处理后的器件获得了稳定的电压调控能力,其电压的调控范围最大为79.5%。干法转移方法和飞秒激光制备Au电极-纳米线互连结构拓宽了金属-半导体异质界面多材料体系,制备的倒相器为自下而上的微纳电子器件组装提供了一种新思路。

参考文献

[1] Bach-Toledo L, Hryniewicz B M, Marchesi L F, et al. Conducting polymers and composites nanowires for energy devices: a brief review[J]. Materials Science for Energy Technologies, 2020, 3: 78-90.

[2] Haque S M, De R, Tripathi S, et al. Plasmonic effect of diffused Ag nanoparticles in EB evaporated Ag/TiO2 bilayer thin films and role of oxygen pressure[J]. Journal of Alloys and Compounds, 2020, 849: 156553.

[3] Hao Q, Niu X X, Nie C S, et al. A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31410-31418.

[4] Zhao B, Wang Y F, Zhang Y F. Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding[J]. Electronic Materials Letters, 2017, 13(2): 168-173.

[5] Tang J S, Cao Q, Farmer D B, et al. High-performance carbon nanotube complementary logic with end-bonded contacts[J]. IEEE Transactions on Electron Devices, 2017, 64(6): 2744-2750.

[6] Krasheninnikov A V, Nordlund K, Keinonen J. Production of defects in supported carbon nanotubes under ion irradiation[J]. Physical Review B, 2002, 65(16): 165423.

[7] Kim S, Russell M, Kulkarni D D, et al. Activating “invisible” glue: using electron beam for enhancement of interfacial properties of graphene-metal contact[J]. ACS Nano, 2016, 10(1): 1042-1049.

[8] Zhang D S, Wu L C, Ueki M, et al. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045001.

[9] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013.

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 1002013.

[10] Garnett E C, Cai W, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

[11] Lin L C, Liu L, Musselman K, et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 2016, 26(33): 5979-5986.

[12] Lin L C, Zou G S, Liu L, et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 2016, 108(20): 203107.

[13] Cui J L, Cheng Y, Zhang J W, et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 2019, 9(3): 476.

[14] Xing SL, Lin L C, Zou G S, et al. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation[J]. Nanotechnology, 2017, 28(40): 405302.

[15] Chee S S, Seo D, Kim H, et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors[J]. Advanced Materials (Deerfield Beach, Fla.), 2019, 31(2): e1804422.

[16] Kim J Y, Park H J, Lee S H, et al. Distinctive field-effect transistors and ternary inverters using cross-type WSe2/MoS2 heterojunctions treated with polymer acid[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36530-36539.

[17] 郭敏超, 王明娣, 张胜江, 等. FR-4覆铜板飞秒激光微孔加工工艺研究[J]. 中国激光, 2020, 42(12): 1202008.

    Guo M C, Wang M T, Zhang S J, et al. Techniques for femtosecond laser processing of micro-holes in FR-4 copper clad laminate[J]. Chinese Journal of Lasers, 2020, 42(12): 1202008.

[18] Xiao M, Lin L, Xing S, et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 2020, 127(18): 184901.

[19] 滕达, 赵永哲, 王云成, 等. 基于硅-绝缘体结构的石墨烯等离激元波导[J]. 激光与光电子学进展, 2020, 58(3): 032301.

    Teng D, Zhao Y Z, Wang Y C, et al. Graphene plasmonic waveguide based on silicon-on-insulator structures[J]. Laser & Optoelectronics Progress, 2020, 58(3): 032301.

[20] Meng J P, Li Z. Schottky-contacted nanowire sensors[J]. Advanced Materials, 2020, 32(28): 2000130.

孙天鸣, 肖宇, 霍金鹏, 沈道智, 王文先, 邹贵生. 飞秒激光辐照连接金属氧化物纳米线及电性能调控[J]. 中国激光, 2021, 48(8): 0802006. Tianming Sun, Yu Xiao, Jinpeng Huo, Daozhi Shen, Wenxian Wang, Guisheng Zou. Nanojoining and Electrical Performance Modulation of Metal Oxide Nanowires Based on Femtosecond Laser Irradiation[J]. Chinese Journal of Lasers, 2021, 48(8): 0802006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!