中国激光, 2021, 48 (8): 0802016, 网络出版: 2021-04-01   

银纳米材料的纳连接及其电学性能研究 下载: 998次

Nanojoining and Electrical Properties of Silver Nanomaterials
作者单位
北京航空航天大学机械工程及自动化学院, 北京 100191
摘要
随着微电子器件需求日益迫切,由纳米材料构造的微纳结构在降低尺度并获得特征性能上有着极大的优势。纳连接是从纳米材料构筑微纳结构的有效途径,目前实现纳连接的手段主要包括热烧结、激光烧结等。对比研究了不同连接方法形成的银电极的电学性能及微观结构,并对银纳米材料间的连接机理进行了分析。结果表明,相比于自连接及热烧结,激光烧结在降低电阻率及保持纳米结构方面有着独特的优势,在激光诱导下,银纳米带可在低温下实现互连,形成交联网络结构,从而降低银电极的电阻率,并显著改善其柔韧性。激光烧结电极的电阻率低至1.88×10 -7 Ω·m,同时具有较好连接强度,经3000次弯折后电阻变化率仅为21.26%。
Abstract

Objective Owing to the increasing demand for microelectronic devices, micro-nanostructures obtained using nanomaterials have great advantages in reducing size and achieving characteristic performance. Because a structure characteristic size is reduced to the nanoscale, its light absorption, melting point, and several other physical and chemical properties are different from macroscopic bulk materials, demonstrating the unique size effect of nanomaterials. Therefore, nanojoining often requires low-energy conditions. Chemical, light, electrical, and thermal energies can be used as energy sources to achieve the low-temperature or room-temperature joining of nanomaterials. To date, the methods to achieve nanojoining mainly include self-joining, thermal sintering, and laser sintering. In this study, the performance of the abovementioned three methods in joining silver nanomaterials was evaluated. The electrical properties and microstructure of silver nanomaterials under different joining methods were compared, and the potential joining mechanism was analyzed. Laser sintering, with the advantages of high precision, high efficiency, and low damage to a substrate, is applied in flexible device preparation, dissimilar material combination device preparation, and electronic packaging.

Methods Silver nanomaterials (Ag NP) were obtained by the hydrothermal method. A mixture of 30-mL AgNO3 aqueous solution (5.1-g AgNO3) with 200-mL glucose (14 g) and PVP (8 g) aqueous solution was heated to 90 ℃ for 20 min under vigorous stirring and then naturally cooled. After the ultrasonication and centrifugation of the reaction solution, the solid matter was extracted and dried at 50 ℃ to obtain silver nanomaterials.

Silvernanobelts were synthesized by a one-step solution method at ambient temperature (~25 ℃). The aqueous solution of AgNO3 (4 mol/L,5 mL) was successively added to the aqueous solution of VC (0.25 mol/L,20 mL) and PMAA-Na (mass fraction of 30%,5 μL). The mixture was then washed using water, and the solid material was extracted after centrifugation to obtain the silver nanobelts.

Moreover, the conductive inks (solid content with mass fraction of 30%) with different quantities of silver nanobelts were prepared. Two materials, glass and PI films, were used as substrates. Electrodes were printed using a direct writing platform. Laser sintering was performed using an 808-nm diode laser with a spot diameter of 600 μm and a constant power density of 15.3 W/mm2. Their morphologies were characterized using a scanning electron microscope (SEM, Merlin Compact, Germany) and a transmission electron microscope (TEM, JEOL 2100F, Japan). Resistance of the silver structure was measured using a source meter (Keithley, 2400), and the electrode resistivity σ was calculated using σ=RS/L, where R is measured resistance, S is cross-sectional area, and L is the length of the electrodes. The 20-mm electrodes were used for bending tests using a homemade bending device. The bending frequency was 30 cycles/min, bending degree was 50%, and bending speed was 10 mm/s.

Results and Discussions Chemical energy of a reduction reaction can drive silver nanomaterials to self-join. The self-joined structure was composed of a large number of silver nanobelts with a smooth surface (Fig. 2). The TEM image revealed that the configured nanoparticles were joined using perfectly aligned (111) lattices. Resistivity of the self-joined silver foam was 5.56×10-5 Ω·m. Thermal sintering can significantly reduce the resistivity of silver electrodes. When the sintering temperature increased to 300 ℃, resistivity was stabilized to 5.4×10-7 Ω·m. However, high temperature resulted in a spheroidization effect, leading to resistivity increase to 6.98×10-6 Ω·m (Fig. 3). Laser sintering exhibited unique advantages in reducing resistivity and maintaining nanostructures compared with self-joining and thermal sintering. The silver nanobelts could be joined at a low temperature, forming a cross-linked network structure to reduce the resistivity of the electrodes, and improving its flexibility significantly. The resistivity of the laser-sintered electrodes was 1.88×10-7 Ω·m (Fig. 4), and the resistance change after 3000 bending cycles was 21.26% (Fig. 6).

Conclusions In this study, the performance of the three methods, including self-joining, thermal sintering, and laser sintering, in the joining of silver nanomaterials was evaluated. The electrical properties and microstructure of the silver nanomaterials under different joining methods were compared. Although self-joining can promote the joining of nanoparticles at room temperature(~25 ℃), it results in a large number of dielectric substances in a system. The resistivity of the self-joined structure was 5.56×10-5 Ω·m and that of the nanobelt electrodes after thermal sintering was 5.4×10-7 Ω·m. However, the sintered structure was uncontrollable at high temperatures and not suitable for flexible substrates. In contrast, laser sintering can induce the joining of silver nanomaterials at low temperatures without destroying a substrate. Under the laser irradiation, the silver nanobelts were interconnected to form a network structure, electrode resistivity was 1.88×10-7 Ω·m, and electrode resistance change rate was 21.26% after 3000 bending cycles.

1 引言

随着电子器件向着微型化、集成化、轻量化、便携化方向发展,器件内部结构尺寸逐渐缩小至微米至纳米量级,传统“宏”机械制造技术已不能满足这些“微”机械和“微”系统高精度制造和装配加工的要求,必须开发微纳制造的技术与方法[1-2]。微纳制造技术是微传感器、微执行器、微结构和功能微纳系统制造的基本手段和重要基础[3]。其中,微纳米尺度的连接技术已成为从纳米材料构筑微纳结构的有效途径。由于待连接结构尺寸缩小到纳米尺度后,其光吸收性、熔点等许多物理化学性质与宏观块材有很大区别,表现出纳米材料独有的尺寸效应、微结构的表面效应等[4],这使得纳米尺度的连接往往对能量条件要求较低,化学能、光能、电能、热能等途径均能作为能量来源[5-8],实现纳米材料的低温甚至室温连接[9-10]

传统热烧结是“自下而上”制备微电极等微纳结构的常用手段之一,通过烧结可将原本分散的材料连接为整体结构,获得良好的电学及机械性能。Li等[11]按摩尔比2∶1(Cu∶Ag)配置了纳米银铜导电膏,在250 ℃,1.12 MPa,Ar-H2气氛下实现了纳米材料的连接,所得的导电膏电阻率为1.99×10-7 Ω·m,最大剪切强度为25.4 MPa。Wang等[12]使用热烧结对直写电极内的银纳米颗粒进行连接,该电极经90 ℃,15 min热烧结后电阻率降到1.2×10-7 Ω·m。但受限于基底材料,热烧结不适用于柔性基底[13]。采用化学方法对纳米材料进行局域修饰,还可实现纳米材料的自组装及自连接。Peng等[14]使用去离子水清洗包裹在银纳米线表面的有机物保护膜,裸露的银纳米线表面具有高表面能,在表面能的驱使下,界面处的原子经扩散形成金属键合,实现了纳米线在室温下的自连接。Marzbanrad等[15]在液体环境中将银盐前驱体还原为银纳米片,并在结构导向剂聚甲基丙烯酸的作用下实现银纳米片的自组装连接,得到银纳米带。

热烧结虽适用于大面积连接但烧结条件通常较苛刻,而自连接无法进行精细操控,难以大范围应用。激光作为一种能量的承载形式,在激光辐照银纳米颗粒时,等离子激元效应诱导在纳米结构不连续处产生局部“热点”[16],使得该部位的能量远高于其他位置[17],利用该能量可促使纳米材料边界的原子扩散,能够在近室温下消除边界实现互连的同时保持纳米结构完整性[18]。由于激光烧结具有高精度、高效率、低损伤的优势,在柔性器件制备、异种材料组合器件制备、电子封装等领域有望得到应用[19-20]。本文采用银纳米颗粒、纳米带制备不同导电电极,研究了自连接、热烧结、激光烧结三种连接方式对银纳米材料的微观结构及其导电性能的影响,并对各连接方式的连接机理进行了探究。

2 实验部分

2.1 原料及试剂

实验所需试剂包括硝酸银、聚甲基丙烯酸钠(PMAA)、抗坏血酸(VC)、聚乙烯吡咯皖酮(PVP)、葡萄糖、氢氧化钠、聚乙二醇(PEG)等。所用化学药品均为分析纯,全部购自国药集团化学试剂有限公司。实验用水为去离子水。

采用水热法制备银纳米颗粒(AgNP),将200 mL水、14 g葡萄糖、8 g PVP混合均匀,所得溶液加热至90 ℃,逐滴加入30 mL 1 mol/L的硝酸银溶液,并伴随转子搅拌。90 ℃保温20 min后自然冷却。反应溶液经超声和离心后,提取固体物质,并使其在50 ℃下烘干,得到银纳米颗粒。

采用室温下的液相还原法制备银纳米带(AgNB),将5 mL硝酸银(4 mol/L)溶液加入到20 mL抗坏血酸(0.25 mol/L)与聚甲基丙烯酸钠(5 μL,质量分数为30%)的混合溶液中,得到银纳米带悬浊液。静置片刻,用去离子水洗涤沉淀,离心后提取固体物质,得到银纳米带。

2.2 实验步骤及仪器设备

固定固体物质的含量(质量分数w为30%), 制备具有不同银纳米带含量的导电油墨,油墨成分见表1。采用气动式微笔直写平台直写电极用于热烧结及激光烧结,油墨挤出压强约10.34 kPa, 喷嘴内径为500 μm,直写速度为2 mm/s;采用光斑直径为600 μm,功率密度为15.3 W/mm2的类高斯分布半导体激光(波长808 nm,扫描速率2 mm/s)对直写电极进行烧结;采用扫描电子显微镜(SEM, Merlin Compact, Germany)和透射电子显微镜(TEM, JEOL 2100F, Japan)观察结构的形貌;通过数字源表(Keithley, 2400, USA)测量所得结构的电学性能,电极电阻率σ通过公式σ= RS/L计算,其中R为电极两端电阻值,S为电极横截面积,L为电极长度;弯折测试中使用的电极长度为20 mm, 弯折程度为50%,弯折频率30 min-1,弯折速率为10 mm/s。

表 1. 导电油墨成分

Table 1. Contents of conductive inks

InkFiller(w=30%)Solvent(w=64%)Dispersing agent(w=6%)
AgNB-030%AgNPH2OPEG
AgNB-1010%AgNB, 20%AgNPH2OPEG
AgNB-2020%AgNB, 10%AgNPH2OPEG
AgNB-3030%AgNBH2OPEG

查看所有表

3 分析与讨论

湿化学法制备得到的纳米颗粒表面均匀包裹PVP薄膜[21],可确保纳米颗粒在保存过程中不团聚变质,其平均粒径约为72 nm,如图1(a)所示。在结构导向剂PMAA的作用下,银纳米颗粒在液相环境中自发连接形成银纳米带,所得纳米带平均宽度为215 nm,厚度为42 nm,如图1(b)所示。本研究将分别从自连接、热烧结、激光烧结三种角度出发,对比不同能量对银纳米材料纳连接及其电学性能的影响。

图 1. 合成纳米材料表面形貌。(a)银纳米颗粒;(b)银纳米带

Fig. 1. Morphology of synthesized silver. (a) Nanoparticles; (b) nanobelts

下载图片 查看所有图片

3.1 银纳米颗粒的自连接

当没有额外能量输入时,仅依靠化学反应自身的化学能可驱动银纳米材料的自发连接[22]。在纳米带的制备过程中,使用无水乙醇迅速稀释反应溶液,可中断反应过程,从而提取反应初期产物并观察其微观形貌,如图2(a)所示。可见反应初期体系内含有大量银纳米颗粒聚集体及部分纳米带结构。SEM结果显示,纳米带由纳米颗粒构筑而成,颗粒轮廓清晰可辨。从图2(b)可以看出,反应完成后的样品则是由大量表面光滑的银纳米带构成。TEM结果显示,银纳米颗粒间存在金属键合,并沿(111)晶面组装成为具有一维结构的银纳米带[图2(c)]。进一步观察发现,部分纳米带之间也存在相似的连接行为,同时彼此交联缠绕形成网络结构,为电子的传输提供路径[图2(d)]。PMAA作为结构导向剂,可选择性吸附于银(111)晶面,并抑制该晶面原子扩散及生长[23]。未被保护的晶面由于配位不足且具有较低的原子排列密度,在高表面能的作用下邻近纳米颗粒彼此经原子扩散实现自连接[24]。该过程同时实现了纳米颗粒的还原及室温液下连接,但却在体系内残留了大量的包括结构导向剂、还原产物等在内的介电物质。自连接使原本分散的纳米颗粒/纳米带连接形成三维网络结构的多孔骨架,该骨架可抵抗干燥过程中溶剂表面张力的影响。通过冷冻干燥去除纳米带悬浊液中的溶剂,可制备出三维银纳米带多孔材料,经测量该多孔银电阻率为5.56×10-5 Ω·m,压缩测试显示该多孔材料的弹性模量为8 kPa。

图 2. 银纳米颗粒的自连接。(a)连接初期连接界面的SEM照片;(b)连接后期连接界面的SEM形貌图;(c)纳米片沿(111)晶面定向连接界面的TEM照片;(d)纳米带间的连接界面的TEM照片

Fig. 2. Self joining of silver nanoparticles. (a) SEM image of the reaction product taken from early stage; (b) SEM image of the reaction product after joining; (c) TEM image of three silver nanoparticles after joining, in which directions of (111) planes of the particles are marked; (d) TEM image of joining interface of two silver nanobelts

下载图片 查看所有图片

3.2 银纳米带的热烧结

为研究银纳米带的烧结性能,将银纳米带制成导电油墨,经微笔直写在玻璃上制备出银纳米带电极。由图3(a)可以看出,未烧结电极内纳米带边界粗糙,彼此堆砌分布,同时由于直写后电极内部含有分散剂PEG、包裹在纳米带表面的PMAA薄膜等很多有机物,故电极内部存在较大的接触电阻,因此其电阻通常大于1 MΩ,需通过后续的烧结过程去除有机物,提高其导电性。分别在100,200,300,400 ℃下对电极进行30 min的烧结处理,烧结温度对电阻率的影响如图3(b)所示。经100 ℃烧结后电极电阻率明显下降,并随着烧结温度升高到300 ℃,电极电阻率稳定至5.4×10-7 Ω·m;继续升温则出现过烧现象,电阻率升高到6.98×10-6 Ω·m。不同温度烧结后电极的微观形貌如图3(c)~(f)所示,在热的作用下,包裹于纳米带表面的PMAA可逐渐分解[25],纳米材料本身的尺寸效应将带来较高的原子表面活性,使表面原子具有较强的迁移能力。并由于表面的曲率因素在纳米材料表面原子接触后发生迁移,在毛细力的作用下邻近的纳米带发生扩散互连。烧结后的结构呈整体网络状。有机物的分解及烧结颈的形成,一方面将降低内部接触电阻,另一方面,随着相邻颗粒之间原子扩散的进行,颗粒之间由点接触转变为面接触,使一部分接触电阻转变为更小的体电阻。在一定范围内,随着烧结温度的升高,纳米颗粒之间的原子扩散和传质愈加充分,可进一步促进电阻率的降低。继续升高烧结温度至300 ℃时,烧结颈尺寸增加至443 nm,同时纳米带轮廓逐渐模糊,其宽度增加至微米级,电极致密化程度降低,电阻率升高。而当烧结温度升高至400 ℃时,纳米带无法保持其原始形状,出现了典型的熔化特征,由固相烧结转变为液相烧结,并从中可观察到明显的球化效应[26],即在液态金属与周边介质界面张力的作用下,纳米带汇聚转变为球状,其直径可达17.08 μm,导致电极致密化程度降低,电阻率升高。

图 3. 银纳米带的热烧结。(a)烧结前微观形貌;(b)烧结温度对电极电阻率的影响;(c)~(f)不同烧结温度(100,200,300,400 ℃)下电极微观形貌

Fig. 3. Thermal sintering of silver nanobelts. (a) SEM image of the unsintered electrodes; (b) resistivity as a function of sintering temperature; (c)--(f) SEM images of electrodes sintered after 100, 200, 300, 400 ℃

下载图片 查看所有图片

3.3 银纳米带/颗粒的激光烧结

利用不同质量分数的银纳米带填料制备导电油墨,并用其在柔性聚酰亚胺基底上直写获得电极。接着探索激光对这些电极的烧结行为。各电极电阻率随激光扫描次数的变化如图4所示。经过一次激光扫描后,电极电阻明显降低,电阻率降至10-7 Ω·m数量级,这表明激光的热作用可有效分解电极内的有机物,同时光诱导等离子激元效应可促进银纳米材料之间的互连。此外,电极中纳米带的含量对其电阻率有直接影响,电阻率随纳米带含量的增加而降低,其中AgNB-20电极经5次烧结后电阻率低至2.21×10-7 Ω·m,该数值约为AgNB-0电极(3.44×10-7 Ω·m)的64.24%、AgNB-10电极(3.29×10-7 Ω·m)的67.17%、块体银电阻率的10倍。从烧结后的微观结构来看,纳米连接发生在邻近的纳米颗粒之间,而距离较远的纳米颗粒由于等离子激元现象弱而无法形成互连[图5(a)]。由于纳米带具有一维材料的特性,可一定程度填充孔隙或充当贯通孔隙的桥梁;另一方面其还具有近程二维特性,表现为宽大的表面,增加了纳米材料之间的接触面积,进而促进相邻纳米材料间的原子扩散,促进烧结颈的形成[图5(b)和图5(c)]。随着纳米带含量的增加,填料间接触点增加,电极内原本未连接的区域互相连通,最终进一步降低了电阻率。当填料中的纳米颗粒全部替换为纳米带后(30% AgNB电极),电极烧结,烧结后其连接程度更高且呈网络结构,如图5(d)所示,该结构为电子传输提供了更多路径,所得电极电阻率低至1.88×10-7 Ω·m,与纯纳米颗粒电极(30% AgNP)相比,导电性能提升了82.98%。

图 4. 激光扫描次数对电极电阻率的影响

Fig. 4. Resistivity as a function of laser scanning times

下载图片 查看所有图片

图 5. 激光烧结后各电极微观扫描电镜形貌。(a) AgNB-0; (b) AgNB-10; (c) AgNB-20; (d) AgNB-30

Fig. 5. SEM images of laser sintered electrodes. (a) AgNB-0; (b) AgNB-10; (c) AgNB-20; (d) AgNB-30

下载图片 查看所有图片

采用自制装置对激光扫描5次后各直写电极的抗弯折稳定性进行了测试,评价了各电极弯折后的电阻变化率K,其中K=(R-R0)/R0,R为弯折后电阻,R0为电极初始电阻。激光烧结后聚酰亚胺上直写的电极与基体的结合力较好,其中纳米带在抵抗剧烈弯折变形中有着更大的优势,电极抗弯折性能随银纳米带含量的增加而增强。在3000个弯折循环后,纯纳米颗粒电极电阻变化达164.88%,而与之相比,纳米带质量分数为10%、20%、30%的电极电阻变化分别为108.92%、59.05%、21.26%[图6(a)]。使用软件image-pro-plus对弯折前后电极的SEM照片进行灰度分析,分别统计得到图片选区面积及孔隙总面积,进而对比得到电极弯折前后的孔隙率,如图6(b)所示。结果表明,各电极孔隙率随纳米带含量增加而降低,AgNB-0电极弯折前孔隙率为8.97%,3000次弯折后其孔隙率升至14.48%,而AgNB-30弯折后孔隙率仅为1.79%。弯折后电极微观形貌如图7所示,可见颗粒-颗粒之间的连接界面强度较弱,在剧烈弯折后,互连的纳米颗粒一部分发生塑性变形,另一部分则断开结合,成为孤立的颗粒[图7(a)],从而导致较高的电阻变化率。而纳米带的引入提供了更多接触点,促进了纳米材料间的金属键结合[27]。弯折可引起纳米带塑性变形及一少部分连接纳米带断裂,但对原有的电子传输路径影响甚微,因此电阻变化较小。对于颗粒-带之间的连接[图7(b)和图7(c)],弯折虽然会导致部分纳米颗粒从纳米带表面脱落,但宽大的纳米带在弯折产生的微裂纹间起到了桥梁作用,并不会破坏纳米带之间的导电网络,如图7(d)所示,AgNB-30电极内纳米带连接形成了网络结构,因此其具有最佳的机械性能。

图 6. 电极弯折测试。(a)弯折次数对电极电阻变化率的影响;(b)经3000次弯折前后电极孔隙率对比

Fig. 6. Bending tests of sintered electrodes. (a) Influence of bending cycles on rate of electrode resistance; (b) comparison of electrode porosity before and after 3000 bending

下载图片 查看所有图片

图 7. 经3000次弯折后各电极微观形貌。(a) AgNB-0; (b) AgNB-10; (c) AgNB-20; (d) AgNB-30

Fig. 7. SEM images of electrodes after 3000 bending cycles. (a) AgNB-0; (b) AgNB-10; (c) AgNB-20; (d) AgNB-30

下载图片 查看所有图片

综上所述,自连接、热烧结、激光烧结三种不同的连接方式,均可不同程度实现银纳米材料的连接。其中,自连接的工艺简便,且对能量要求较低,但其连接程度较弱,连接过程中不可控因素较多;热烧结适合大面积连接,但烧结通常需较高温度且对柔性基底的要求较高;激光烧结具有效果好、效率高、烧结结构可调控、适用于柔性基底等优势,尤其在纳米材料的选区高精度连接中有着较好的应用前景。

4 结论

研究了银纳米材料在制备过程中的自连接过程,对比研究了热烧结及激光连接后银电极的微观结构及其电学性能。自连接虽可促使室温下纳米颗粒的连接,但该方法却在体系内残留了大量介电物质,连接后电阻率为5.56×10-5 Ω·m,纳米带之间连接程度较弱。热烧结后的纳米带电极电阻率低至5.4×10-7 Ω·m,但高温下烧结结构不可控且对基底要求较高。相比而言,激光烧结可在避免基底损伤的同时诱导银纳米材料在低温下连接,进而得到电学、机械性能良好的电极。在激光诱导下,银纳米带间实现互连形成网络结构,电极电阻率低至1.88×10-7 Ω·m,且经3000次弯折后电极的电阻变化率仅为21.26%。

参考文献

[1] Arafat M M, Dinan B, Akbar S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides: a review[J]. Sensors (Basel), 2012, 12(6): 7207-7258.

[2] Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J]. Nature, 2001, 409(6816): 66-69.

[3] Li L, Hong M H, Schmidt M, et al. Laser nano-manufacturing: state of the art and challenges[J]. CIRP Annals, 2011, 60(2): 735-755.

[4] Li M, Wang Z, Zhang R Q, et al. Size and dimension effect on volume plasmon energy of nanomaterials[J]. Solid State Communications, 2012, 152(16): 1564-1566.

[5] Peng P, Li L H, Guo W, et al. Room-temperature joining of silver nanoparticles using potassium chloride solution for flexible electrode application[J]. The Journal of Physical Chemistry C, 2018, 122(5): 2704-2711.

[6] Wang X D, Guo W, Zhu Y, et al. Electrical and mechanical properties of ink printed composite electrodes on plastic substrates[J]. Applied Sciences, 2018, 8(11): 2101.

[7] Jae S. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(9): 6174-6178.

[8] Wang X, Fang Z Z, Sohn H Y, et al. Grain growth during the early stage of sintering of nanosized WC-Co powder[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(3): 232-241.

[9] Dai G, Wang B, Xu S, et al. Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods[J]. ACS Applied Materials & Interfaces, 2016, 8(21): 13506-13511.

[10] Hu L, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963.

[11] Li J J, Yu X, Shi T L, et al. Depressing of Cu: Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles[J]. Journal of Alloys and Compounds, 2017, 709: 700-707.

[12] Wang N, Liu Y, Guo W, et al. Low-temperature sintering of silver patterns on polyimide substrate printed with particle-free ink[J]. Nanotechnology, 2020, 31(30): 305301.

[13] Ko S H, Pan H, Grigoropoulos C P, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles[J]. Nanotechnology, 2007, 18(34): 345202.

[14] Peng P, Liu L, Gerlich A P, et al. Self-oriented nanojoining of silver nanowires via surface selective activation[J]. Particle & Particle Systems Characterization, 2013, 30(5): 420-426.

[15] Marzbanrad E, Hu A, Zhao B, et al. Room temperature nanojoining of triangular and hexagonal silver nanodisks[J]. The Journal of Physical Chemistry C, 2013, 117(32): 16665-16676.

[16] Alarifi H, Hu A M, Yavuz M, et al. Silver nanoparticle paste for low-temperature bonding of copper[J]. Journal of Electronic Materials, 2011, 40(6): 1394-1402.

[17] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013.

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 1002013.

[18] Beresna M, Gecevičius M, Kazansky P G, et al. Ultrafast laser direct writing and nanostructuring in transparent materials[J]. Advances in Optics and Photonics, 2014, 6(3): 293-339.

[19] Maekawa K, Yamasaki K, Niizeki T, et al. Drop-on-demand laser sintering with silver nanoparticles for electronics packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(5): 868-877.

[20] 赵兴科, 邢德胜, 刘大勇, 等. 激光微连接技术研究与应用进展[J]. 航空制造技术, 2017, 60(12): 28-34.

    Zhao X K, Xing D S, Liu D Y, et al. Research and application development on laser micro joining technology[J]. Aeronautical Manufacturing Technology, 2017, 60(12): 28-34.

[21] Ma Y, Li H, Bridges D, et al. Zero-dimensional to three-dimensional nanojoining: current status and potential applications[J]. RSC Advances, 2016, 6(79): 75916-75936.

[22] Nooney R I, Dhanasekaran T, Chen Y, et al. Self-assembled highly ordered spherical mesoporous silica/gold nanocomposites[J]. Advanced Materials, 2002, 14(7): 529-532.

[23] Xia X H, Zeng J, Oetjen L K, et al. Quantitative analysis of the role played by poly(vinyl pyrrolidone) in seed-mediated growth of Ag nanocrystals[J]. Journal of the American Chemical Society, 2012, 134(3): 1793-1801.

[24] Hong B H, Bae S C, Lee C W, et al. Ultra thin single-crystalline silver nanowire arrays formed in an ambient solution phase[J]. Science, 2001, 294(5541): 348-351.

[25] 顾文娟, 陆亚明, 张幼维, 等. 聚甲基丙烯酸纳米水凝胶的水相合成及其磁性功能化[J]. 高分子学报, 2016(8): 1072-1078.

    Gu W J, Lu Y M, Zhang Y W, et al. Poly(methacrylic acid) Nano-hydrogels synthesized in water and their magnetic functionalization[J]. Acta Polymerica Sinica, 2016(8): 1072-1078.

[26] Wu T, Wang M Z, Gao Y W, et al. Effects of plastic warm deformation on cementite spheroidization of a eutectoid steel[J]. Journal of Iron and Steel Research, International, 2012, 19(8): 60-66.

[27] Garnett E C, Cai W S, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

王欣达, 廖嘉宁, 姚煜, 郭伟, 康慧, 彭鹏. 银纳米材料的纳连接及其电学性能研究[J]. 中国激光, 2021, 48(8): 0802016. Xinda Wang, Jianing Liao, Yu Yao, Wei Guo, Hui Kang, Peng Peng. Nanojoining and Electrical Properties of Silver Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(8): 0802016.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!