Advanced Photonics, 2019, 1 (4): 046004, Published Online: Aug. 28, 2019  

Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices Download: 574次

Author Affiliations
1 Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
2 University of Chinese Academy of Sciences, Beijing, China
Abstract
Bose–Einstein condensate (BEC) exhibits a variety of fascinating and unexpected macroscopic phenomena, and has attracted sustained attention in recent years—particularly in the field of solitons and associated nonlinear phenomena. Meanwhile, optical lattices have emerged as a versatile toolbox for understanding the properties and controlling the dynamics of BEC, among which the realization of bright gap solitons is an iconic result. However, the dark gap solitons are still experimentally unproven, and their properties in more than one dimension remain unknown. In light of this, we describe, numerically and theoretically, the formation and stability properties of gap-type dark localized modes in the context of ultracold atoms trapped in optical lattices. Two kinds of stable dark localized modes—gap solitons and soliton clusters—are predicted in both the one- and two-dimensional geometries. The vortical counterparts of both modes are also constructed in two dimensions. A unique feature is the existence of a nonlinear Bloch-wave background on which all above gap modes are situated. By employing linear-stability analysis and direct simulations, stability regions of the predicted modes are obtained. Our results offer the possibility of observing dark gap localized structures with cutting-edge techniques in ultracold atoms experiments and beyond, including in optics with photonic crystals and lattices.

Liangwei Zeng, Jianhua Zeng. Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices[J]. Advanced Photonics, 2019, 1(4): 046004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!