Chinese Optics Letters, 2018, 16 (12): 120201, Published Online: Dec. 7, 2018  

Intensity-independent molecular rotational decoherence lifetimes measured with mean wavelength shifts of femtosecond pulses Download: 651次

Author Affiliations
1 School of Science, East China University of Technology, Nanchang 330013, China
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 School of Science, East China Jiaotong University, Nanchang 330013, China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract
We report on an experimental investigation on the dynamic decoherence process of molecular rotational wavepackets during femtosecond laser filamentation based on time-dependent mean wavelength shifts of a weak probe pulse. Details of periodic revival structures of transient alignment can be readily obtained from the measured shifted spectra due to the periodic modulation of the molecular refractive index. Using the method, we measured decoherence lifetimes of molecular rotational wavepackets in N2 and O2 under different experimental conditions. Our results indicate that decoherence lifetimes of molecular rotational wavepackets are primarily determined by the relative population of rotational states in the wave packet and intermolecular collisions, rather than the focusing intensity.

Hongqiang Xie, Guihua Li, Jinping Yao, Wei Chu, Zhiming Chen, Ya Cheng. Intensity-independent molecular rotational decoherence lifetimes measured with mean wavelength shifts of femtosecond pulses[J]. Chinese Optics Letters, 2018, 16(12): 120201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!