Chinese Optics Letters, 2019, 17 (2): 020008, Published Online: Feb. 14, 2019  

Manipulating optical Tamm state in the terahertz frequency range with graphene Download: 728次

Author Affiliations
1 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
2 International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract
The optical Tamm state (OTS), which exists generally at the interface between metal and a dielectric Bragg mirror, has been studied extensively in the visible and near infrared spectra. Nevertheless, OTS in the terahertz (THz) region normally receives far less attention. In this Letter, we demonstrate the physical mechanism of OTS at the interface between graphene and a dielectric Bragg mirror in the THz frequency band by applying the transfer matrix method and dispersion characteristics. Based on such mechanisms, we propose an efficient method that can precisely generate and control OTS at a desired angle and frequency. Moreover, we show that the OTS is dependent on the optical conductivity of graphene, making the graphene–dielectric-Bragg-mirror a good candidate for dynamic tunable OTS device in the THz frequency range.

Leyong Jiang, Jiao Tang, Qingkai Wang, Yuexiang Wu, Zhiwei Zheng, Yuanjiang Xiang, Xiaoyu Dai. Manipulating optical Tamm state in the terahertz frequency range with graphene[J]. Chinese Optics Letters, 2019, 17(2): 020008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!