Chinese Optics Letters, 2021, 19 (2): 021301, Published Online: Jan. 4, 2021  

Multi-gigahertz laser generation based on monolithic ridge waveguide and embedded copper nanoparticles Download: 692次

Author Affiliations
1 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
3 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4 Department of Physics, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
Abstract
Copper (Cu) nanoparticles (NPs) are synthesized under the near-surface region of the Nd:Y3Al5O12 (Nd:YAG) crystal by direct Cu+ ions implantation. Subsequently, the monolithic ridge waveguide with embedded Cu NPs is fabricated by C4+ ions irradiation and diamond saw dicing. The nonlinear optical response of the sample is investigated by the Z-scan technique, and pronounced saturable absorption is observed at the 1030 nm femtosecond laser. Based on the obvious saturable absorption of Cu NPs embedded Nd:YAG crystal, 1 μm monolithic mode-locked pulsed waveguide laser is implemented by evanescent field interaction between NPs and waveguide modes, reaching the pulse duration of 24.8 ps and repetition rate of 7.8 GHz. The work combines waveguides with NPs, achieving pulsed laser devices based on monolithic waveguide chips.

Chi Pang, Rang Li, Ziqi Li, Ningning Dong, Jun Wang, Feng Ren, Feng Chen. Multi-gigahertz laser generation based on monolithic ridge waveguide and embedded copper nanoparticles[J]. Chinese Optics Letters, 2021, 19(2): 021301.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!