Chinese Optics Letters, 2021, 19 (9): 091404, Published Online: Jun. 15, 2021   

Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure

Xun Li 1,3Ming Li 1,**Hongjun Liu 1,2,*
Author Affiliations
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
We propose an effective way to achieve an enhanced optical absorption surface of titanium alloy 7 (Ti7) fabricated by a femtosecond (fs) laser assisted with airflow pressure. The effect of laser scanning speed and laser power on the surfaces’ morphology and average reflectivity was studied. In order to further reduce the surface’s reflectivity, different airflow pressure was introduced during the fabrication of Ti7 by a fs laser. Furthermore, the average reflectivity of samples fabricated under different laser parameters assisted with airflow was presented. In addition, the high and low temperature tests of all samples were performed to test the stability performance of the hybrid micro/nanostructures in extreme environments. It is demonstrated that the airflow pressure has an important influence on the micro/nanostructures for light trapping, the average reflectivity of which could be as low as 2.31% over a broad band of 250–2300 nm before high and low temperature tests, and the reflection for specific wavelengths can go below 1.5%.

Xun Li, Ming Li, Hongjun Liu. Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J]. Chinese Optics Letters, 2021, 19(9): 091404.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!