Chinese Optics Letters, 2022, 20 (2): 023801, Published Online: Oct. 18, 2021  

Rapid fabrication of microrings with complex cross section using annular vortex beams

Author Affiliations
1 Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
2 Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
3 Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
Abstract
A ring-shaped focus, such as a focused vortex beam, has played an important role in microfabrication and optical tweezers. The shape and diameter of the ring-shaped focus can be easily adjusted by the topological charge of the vortex. However, the flow energy is also related to the topological charge, making the individual control of diameter and flow energy of the vortex beam impossible. Meanwhile, the shape of the focus of the vortex beam remains in the hollow ring. Expanding the shape of focus of structural light broadens the applications of the vortex beam in the field of microfabrication. Here, we proposed a ring-shaped focus with controllable gaps by multiplexing the vortex beam and annular beam. The multiplexed beam has several advantages, such as the diameter and flow energy of the focal point can be individually controlled and are not affected by the zero-order beam, and the gap size and position are controllable.

Chenchu Zhang, Hanchang Ye, Rui Cao, Shengyun Ji, Heng Zhang, Linhan Zhao, Sizhu Wu, Hua Zhai. Rapid fabrication of microrings with complex cross section using annular vortex beams[J]. Chinese Optics Letters, 2022, 20(2): 023801.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!