High Power Laser Science and Engineering, 2019, 7 (2): 02000e35, Published Online: Jun. 24, 2019  

High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal Download: 730次

Author Affiliations
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
We report on a high-repetition-rate, high-power continuously pumped Nd:GdVO4 regenerative amplifier. Numerical simulations successfully pinpoint the optimum working point free of bifurcation instability with simultaneous efficient energy extraction. At a repetition rate of 100 kHz, a maximum output power of 23 W was obtained with a pulse duration of 27 ps, corresponding to a pulse energy of $230~\unicode[STIX]{x03BC}\text{J}$. The system displayed an outstanding stability with a root mean square power noise as low as 0.3%. The geometry of the optical resonator and the pumping scheme enhanced output power in the $\text{TEM}_{00}$ mode with a single bulk crystal. Accordingly, nearly diffraction-limited beam quality was produced with $M^{2}\approx 1.2$ at full pump power.

Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e35.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!