网络首发

High Power Laser Science and Engineering
SCIE,EI,SCOPUS,CJCR,CSCD
, ()
Reflecting PetaWatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit
录用时间:2020-11-18
论文摘要
The quantum vacuum plays a central role in Physics. Quantum Electrodynamics (QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities >4.7x10^29 W/cm^2. Approaching this ‘Schwinger limit’ would enable testing major but still unverified predictions of QED. Yet, the Schwinger limit is seven orders of magnitude above the present record in light intensity achieved by high-power lasers. To close this considerable gap, a promising paradigm consists in reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range, and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. This however faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of PetaWatt-class lasers is a challenging but realistic objective.
引用本文
Quere F., Vincenti Henri. Reflecting PetaWatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit [J]. High Power Laser Science and Engineering, , (): . 
DOI:10.1017/hpl.
PDF 全文:点击此处查看 

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!