光学学报, 2016, 36 (7): 0712004, 网络出版: 2016-07-08  

基于光子相关光谱分析的声压量值复现方法

Realization of Airborne Sound Pressure Based on Photon Correlation Spectroscopy
作者单位
中国计量科学研究院力学与声学计量科学研究所, 北京 100029
摘要
寻求不依赖于实验室标准传声器的灵敏度而直接溯源至国际单位制基本单位的声压量值复现技术是声学计量的长期目标,对声压量值摆脱实物基准具有重要意义,激光多普勒测速技术是实现这一目标的有效途径。以行波管内平面波声场为测量对象,建立无固定频移的激光多普勒测速系统,采用光子相关光谱分析法解调多普勒信号,获得声管内示踪粒子的振动速度,根据平面波声压与质点振动速度的线性关系,复现声管测量点处的声压。以工作标准传声器的测量结果为参考,评估测量方案的可行性和测量结果的准确性,分析影响测量准确性的主要因素。测量结果表明,声波频率为315 Hz,声压级在100 dB~110 dB范围内间隔1 dB变化时,测量偏差小于0.5 dB;声压级为105 dB,声波频率为315,400,500,800 Hz时测量偏差小于0.3 dB。
Abstract
It is a long-term goal and of great significance to seek a new method towards direct realization of the SI unit of sound pressure and no longer rely on the sensitivity of standard laboratory microphone in the field of airborne acoustic metrology. Laser Doppler velocimetry technique can be used to realize the goal. In this paper, the optical interferometer without Doppler frequency bias is designed to investigate the realization of sound pressure in traveling wave tube with the photon correlation spectroscopy (PCS). According to the linear relationship, the sound pressure of plane acoustic wave can be acquired by the demodulated particle vibration velocity from the Doppler signal. The experiments are also implemented to demonstrate the feasibility and accuracy of this scheme with the working standard microphone as reference. For the acoustic frequency of 315 Hz, the deviation between the two methods is less than 0.5 dB with the measured sound pressure level varied every 1 dB in the range from 100 dB to 110 dB. For the measured sound pressure level of 105 dB, the deviation is less than 0.3 dB with acoustic frequency of 315, 400, 500, and 800 Hz.

冯秀娟, 何龙标, 牛锋, 杨平, 钟波, 许欢. 基于光子相关光谱分析的声压量值复现方法[J]. 光学学报, 2016, 36(7): 0712004. Feng Xiujuan, He Longbiao, Niu Feng, Yang Ping, Zhong Bo, Xu Huan. Realization of Airborne Sound Pressure Based on Photon Correlation Spectroscopy[J]. Acta Optica Sinica, 2016, 36(7): 0712004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!