激光与光电子学进展, 2017, 54 (10): 101408, 网络出版: 2017-10-09   

飞秒激光诱导铝基的超疏水表面 下载: 809次

Superhydrophobic Surface of Aluminium Base Induced by Femtosecond Laser
作者单位
湖北工业大学机械工程学院, 湖北 武汉 430068
摘要
利用不同能量的飞秒激光脉冲对铝基材料表面接触角进行调控, 并对其浸润性转变机理进行了分析研究。结果表明, 经飞秒激光加工和时效处理后, 铝基材料表面最终稳定的浸润性状态与激光能量及时效时间相关。随着激光能量的增大, 表面接触角由70°转变为150°以上。对不同能量加工条件下的铝基表面形貌、粗糙度及化学成分进行了分析, 结果表明, 激光加工后的样品浸润性由亲水状态最终转变为超疏水状态。在不同脉冲能量区间均可得到超疏水表面, 但其表面微观结构存在非周期性或周期性结构的差异, 疏水性能的形成机理不同。
Abstract
The surface contact angles of aluminum-based materials is regulated and controlled by using femtosecond laser pulses with different energies, and the transformation mechanism of wettability is analyzed and studied. The results show that the final stable wettability state of aluminum-based material surfaces after the femtosecond laser processing and aging treatment is related to the laser energy and the aging time. With the increase of the laser energy, the surface contact angle is changed from 70° to above 150°. The morphology, roughness and chemical compositions of aluminum-based surfaces are studied under different pulse energy processing conditions. The results show that the wettability of a laser-processed sample changes from a hydrophilic state to a final super-hydrophobic state. The super-hydrophobic surfaces can be obtained in different pulse energy regions, but there are non-periodic or periodic structural differences in their surface microstructures, and the formation mechanisms of hydrophobic properties are different.

杨奇彪, 邓波, 汪于涛, 肖晨光, 汪幸, 陈列, 郑重, 娄德元, 陶青, 翟中生, Bennett Peter, 刘顿. 飞秒激光诱导铝基的超疏水表面[J]. 激光与光电子学进展, 2017, 54(10): 101408. Yang Qibiao, Deng Bo, Wang Yutao, Xiao Chenguang, Wang Xing, Chen Lie, Zheng Zhong, Lou Deyuan, Tao Qing, Zhai Zhongsheng, Bennett Peter, Liu Dun. Superhydrophobic Surface of Aluminium Base Induced by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101408.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!