激光与光电子学进展, 2019, 56 (18): 181403, 网络出版: 2019-09-09   

法布里-珀罗微腔中级联FRET光微流激光产生研究 下载: 530次

Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity
作者单位
太原理工大学新型传感器与智能控制教育部重点实验室,山西 太原 030024
摘要
制备了高品质因子的法布里-珀罗(F-P)光学微腔,结合光微流控技术,采用溶于液体的有机染料香豆素6(Cou6)、罗丹明6G(R6G)、LDS 751的混合物作为增益介质,实现了低阈值级联荧光共振能量转移(FRET)光微流激光的输出。实验采用430 nm(Cou6的最大吸收峰)脉冲光作为抽运光,利用Cou6(供体)和R6G(受体)、R6G(供体)和LDS 751(受体)之间的共振能量转移,即两级共振能量转移过程,产生了对应有机染料LDS 751发射峰的近红外光微流激光。3种染料的FRET过程极大地降低了光微流激光产生的阈值,提高了激光产生过程中的转换效率,可在单一抽运源的情况下,将激光发射波长向长波长方向扩展。
Abstract
Combining with the optical microfluidic technique, we fabricated a Fabry-Perot (F-P) optical microcavity with high quality factor. We realized the generation of a low-threshold cascade fluorescence resonance energy transfer (FRET) optofluidic laser using a mixture containing three types of organic dyes [i.e., Coumarin 6 (Cou6), Rhodamine 6G (R6G), and LDS 751] in solution as the gain media. A pulsed laser with a wavelength of 430 nm (corresponding to the maximum absorption peak of Cou6) was used as the pumping source in the experiment. Further, a near-infrared optofluidic laser was generated, with a wavelength corresponding to the emission peak of LDS 751, using the resonance energy transfer processes between Cou6 (donor) and R6G (acceptor) as well as R6G (donor) and LDS 751 (acceptor), i.e., the second-order energy transfer processes. The laser threshold of the optofluidic laser was drastically decreased, and the corresponding conversion efficiency was considerably improved using the FRET of the three aforementioned types of organic dyes. Furthermore, the emission of the optofluidic laser could be tuned to a long wavelength when only one pumping source was supplied.

邱诚玉, 贾卓楠, 张婷婷, 侯梦迪, 王文杰. 法布里-珀罗微腔中级联FRET光微流激光产生研究[J]. 激光与光电子学进展, 2019, 56(18): 181403. 邱诚玉, 贾卓楠, 张婷婷, 侯梦迪, 王文杰. Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181403.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!