中国激光, 2018, 45 (1): 0102002, 网络出版: 2018-01-24   

Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能 下载: 793次

Microstructure and Properties of Nano-Ti3Al Laser Cladding Layer Prepared on Ti811 Alloy Surface
作者单位
1 中国民航大学工程技术训练中心, 天津 300300
2 天津工业大学机械工程学院, 天津 300387
3 天津市现代机电装备技术重点实验室, 天津 300387
摘要
利用同步送粉激光熔覆技术在Ti811合金表面制备了单道激光熔覆层。利用X射线衍射仪、扫描电镜、能谱分析仪等分析了熔覆层的组织和相组成, 利用显微硬度计测试了熔覆层的显微硬度, 利用摩擦磨损试验机和白光干涉轮廓仪测试了熔覆层的摩擦磨损性能。结果表明:熔覆层为典型的魏氏组织, 在α-Ti围成的晶界中分布着α′-Ti、α″-Ti和β′-Ti, 纳米Ti3Al颗粒弥散分布在熔覆层中; 与基底相比, 熔覆层的显微硬度较, 最高为480 HV; 涂层中弥散分布着大量纳米Ti3Al颗粒, 有效降低了熔覆层的摩擦因数, 提高了熔覆层的摩擦磨损性能。
Abstract
Single channel laser cladding layer is prepared on Ti811 titanium alloy surface using synchronous powder feeding laser cladding technology. Microstructure and phase composition of the layer are analyzed with utilization of X-ray diffractometer, scanning electron microscope and energy dispersive spectrometer. The microhardness of the layer is measured with utilization of micro-sclerometer, and friction and wear properties are measured with utilization of the friction wear testing machine and the white-light interferometry profilometer. The results show that the typical Widmanstatten structure is found in the layer. α′-Ti, α″-Ti, and β′-Ti are distributed in the crystal boundary surrounded by α-Ti, and the nano-Ti3Al particles are dispersively distributed in the layer. The highest microhardness of the layer is 480 HV, which is higher than that of the substrate. A large number of nano-Ti3Al particles are dispersively distributed in the layer. Under the action of particles, the friction coefficient decreases and the friction and wear properties increase.

张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1): 0102002. Zhang Tiangang, Sun Ronglu. Microstructure and Properties of Nano-Ti3Al Laser Cladding Layer Prepared on Ti811 Alloy Surface[J]. Chinese Journal of Lasers, 2018, 45(1): 0102002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!