中国激光, 2018, 45 (1): 0108001, 网络出版: 2018-01-24   

级联晶体倍频器件温度适应性扩展研究 下载: 650次

Research on Extending Temperature Acceptance Bandwidth of Second Harmonic Generation in Cascaded Crystals
作者单位
1 军械工程学院电子与光学工程系, 河北 石家庄 050003
2 武器测试中心, 陕西 华阴 714200
摘要
级联晶体能有效扩展倍频器件的温度适用范围。在考虑空气色散的基础上推导出了级联晶体倍频过程中的能量转换效率公式。根据该公式, 通过仿真计算出了级联两KTiOPO4晶体倍频1064 nm激光时转换效率随温度变化的特性, 并进行了实验验证。实验结果表明:级联晶体中倍频光能量随晶体间距呈余弦分布, 空气色散引起的相位失配量为2π的整数倍时, 级联晶体的倍频温度特性最佳, 最大转换效率可达47.9%, 比单个KTP晶体倍频时的最高效率高12.9%, 温度半宽度可达78 ℃, 是单个KTP晶体倍频温度半宽度的两倍。提出的理论分析能合理解释级联晶体倍频过程中的实验现象, 有助于提高倍频激光的温度稳定性。
Abstract
Extending temperature acceptance bandwidth in second harmonic generation (SHG) by cascading nonlinear crystals is a simple and efficient method. Based on the dispersion of air, a formula describing how dispersion of air affect the conversion efficiency is derived. Based on the formula, conversion efficiency of SHG of 1064 nm in cascaded KTiOPO4 crystals versus temperature is simulated, and corresponding experiments are conducted. In the experiments, conversion efficient is cosine distribute versus the distance between two cascaded crystals, and when the phase mismatch caused by dispersion of air is integer times of 2π, the maximum conversion efficiency reaches 47.9%, which is 12.9% higher than the maximum conversion efficiency in a single KTP crystal, and the temperature acceptance bandwidth is 78 ℃, which is two times broader than that in a single KTP crystal. The theoretical analysis is in good agreement with the experimental results. The research conclusions are conducive to extending temperature acceptance bandwidth for nonlinear frequency conversion by cascading crystals.

刘恂, 沈学举, 殷建玲, 罗赓. 级联晶体倍频器件温度适应性扩展研究[J]. 中国激光, 2018, 45(1): 0108001. Liu Xun, Shen Xueju, Yin Jianling, Luo Geng. Research on Extending Temperature Acceptance Bandwidth of Second Harmonic Generation in Cascaded Crystals[J]. Chinese Journal of Lasers, 2018, 45(1): 0108001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!