中国激光, 2020, 47 (8): 0812001, 网络出版: 2020-08-17   

高精细度光学微腔中原子内态的高效制备和优化 下载: 767次

Efficient Preparation and Optimization of Atomic Internal States in High-Finesse Optical Microcavity
韩星 1,2杨鹏飞 1,2葛瑞芳 1,2贺海 1,2李刚 1,2张鹏飞 1,2张天才 1,2
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
摘要
高精细度光学微腔是强耦合腔量子电动力学(QED)实验系统的核心。然而,受限于光学微腔有限的介入空间,被光学腔俘获的原子内态很难得到有效的初始化处理。通过选用与原子基态及更高阶激发态相互作用的光场,有效避免了微腔腔镜对介入空间的限制,实现了对光学微腔内的原子内态的光泵浦及原子态(自旋极化)的有效制备。同时,基于强耦合光学微腔与腔内不同原子内态的耦合强度差异,建立了一套用于描述和优化腔内原子极化率的模型,最终获得了85%的腔内铯原子的态制备效率。
Abstract
The high-finesse optical microcavity is the core of a strongly coupled cavity quantum electrodynamics (QED) experimental system. However, due to the limited intervention space of an optical microcavity, it is difficult to obtain an effective initialization treatment to the atomic internal states trapped by the optical cavity. By selecting the light field that interacts with the ground state and a higher-order excited state of the atom, the limitation of the microcavity mirror on the intervention space is effectively avoided, and the optical pumping of the atomic internal states and the preparation of the atomic state (spin polarization) in the optical microcavity are realized. At the same time, based on the difference in coupling strength between optical microcavity and different internal states of atoms, a model for describing and optimizing the atomic polarization rate in the cavity is established and the state preparation efficiency of 85% of cesium atoms in the cavity is finally obtained.

韩星, 杨鹏飞, 葛瑞芳, 贺海, 李刚, 张鹏飞, 张天才. 高精细度光学微腔中原子内态的高效制备和优化[J]. 中国激光, 2020, 47(8): 0812001. Han Xing, Yang Pengfei, Ge Ruifang, He Hai, Li Gang, Zhang Pengfei, Zhang Tiancai. Efficient Preparation and Optimization of Atomic Internal States in High-Finesse Optical Microcavity[J]. Chinese Journal of Lasers, 2020, 47(8): 0812001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!