中国激光, 2021, 48 (3): 0307001, 网络出版: 2021-02-02   

基于结构照明的超分辨荧光显微成像重建算法 下载: 1719次

Super-Resolution Fluorescence Microscopy Image Reconstruction Algorithm Based on Structured Illumination
刘智 1,2罗泽伟 1,2王正印 1,2涂壮 1,2庄正飞 1,2陈同生 1,2,*
作者单位
1 华南师范大学生物光子学研究院, 教育部激光生命科学重点实验室, 广东 广州 510631
2 华南师范大学生物光子学研究院, 广东省激光生命科学重点实验室, 广东 广州 510631
摘要
由于具有低光毒性、高速宽视场以及多通道三维超分辨成像能力,超分辨结构照明显微术(SR-SIM)特别适合用于活细胞中动态精细结构的实时检测研究。超分辨结构照明显微图像重建算法(SIM-RA)对SR-SIM的成像质量具有决定性影响。本文首先简要介绍了超分辨显微术的发展现状,阐述了研究SR-SIM图像重建算法的必要性;然后介绍了SR-SIM的成像原理,并重点介绍了SR-SIM图像重建算法,包括SR-SIM中频繁使用的去卷积重建算法、SR-SIM校准与重建过程中参数值获取的算法,以及目前发展的超分辨结构照明显微图像重建算法,并介绍了SR-SIM工具箱;最后总结了当前发展超分辨结构照明显微图像重建算法需解决的5个问题。
Abstract

Significance Super-resolution microscopy overcomes the 200 nm spatial resolution limitation of traditional optical microscopy and has been widely used to image subcellular structures in living cells. Super-resolution microscopy mainly includes stimulated emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). Super-resolution structured illumination microscopy (SR-SIM) is the most widely used super-resolution microscopy technique. Owing to the low phototoxicity, high-speed wide field of view, and multichannel three-dimensional super-resolution imaging capabilities, SR-SIM is especially suitable for real-time detection of dynamic fine structures in living cells. SR-SIM has high-speed wide-field imaging capabilities that enable rapid dynamic measurement of living cells. Compared with STED and SMLM microscopy imaging under a light intensity of ~1000 W/cm 2, SR-SIM allows imaging under a low light intensity of ~10 W/cm 2, which meets the requirement of long-term imaging of living cells. At the same time, multicolor and multichannel imaging by SR-SIM is beneficial to the study of molecular interactions.

The super-resolution structured illumination reconstruction algorithm (SIM-RA) is the key to realizing fast, long-term, and nondestructive super-resolution imaging of SR-SIM. SR-SIM uses structured light in different directions and phases to excite the fluorescent sample for acquiring multiple original images with illumination patterns and then reconstructs a single super-resolution image through mathematical calculations. Owing to the imperfection of the experiment and the inevitable uncertainty in the measurement of experimental parameters, the estimation of the reconstruction parameters results in false signal and noise, which reduces the resolution of the SR-SIM image and introduces artifacts that can be misinterpreted as biologically relevant features. An excellent SIM-RA can improve the accuracy of reconstruction parameters and filter out noise to reduce artifacts and ensure image quality. In addition, a long exposure time will increase the phototoxicity and photobleaching, which is not conducive to the long-time observation of living cells. SIM-RA can reduce the exposure time by two orders of magnitude for the reconstruction of SR-SIM images, allowing the use of fewer original images to achieve SR-SIM image reconstruction, providing longer and faster super-resolution imaging. Initially, SR-SIM requires users to have professional knowledge. The development of SIM-RA makes it unnecessary to manually set parameters, automatically obtain reconstruction parameters and estimate their uncertainty, and thus to reconstruct super-resolution images with a considerably reduced threshold. The super-resolution structured illumination microscopic image reconstruction process requires strict analysis and calculation to ensure the final super-resolution image quality and imaging speed, which relies on an efficient and stable SIM-RA.

In the past two decades, to achieve automatic, simple, and stable acquisition of high-quality and high-spatial-resolution reconstruction images, the development of super-resolution SIM image reconstruction algorithms has never stopped. Systematic summary and analysis of SIM-RA are necessary for users who want to construct a higher-performance super-resolution structured illumination microscopy system.

Progress This article systematically elaborates and analyzes the reconstruction algorithm of super-resolution structured illumination microscopy. First, it briefly introduces the realization principles and respective advantages of the three super-resolution microscopy techniques, i.e., STED, SIM, and SMLM, and expounds the necessity of studying SIM-RA based on the characteristics of SR-SIM imaging. Second, it introduces the imaging principle of SR-SIM based on structured illumination in detail, and focuses on SIM-RA. In view of the possible reasons for the poor imaging quality caused in the SR-SIM image reconstruction process and the improvement of the algorithm for fast, long-term, and nondestructive imaging of SR-SIM, the calibration and parameter value acquisition algorithms of SR-SIM, SIM-RA, and SR-SIM toolbox are analyzed and summarized. Initially, Gustafsson extended the Wiener filter and applied it to SR-SIM image reconstruction to solve the problem of reconstruction artifacts. Compared with Wiener filtering, the R-L deconvolution algorithm reduces the influence of photon noise on the imaging results, and MAP-SIM further reduces the influence of noise by suppressing defocused light (Fig.4). System calibration before SR-SIM imaging helps reduce artifacts, and the accuracy of reconstruction parameters determines the quality of the reconstructed image. Using algorithms including iterative calculations to accurately determine reconstruction parameters such as illumination frequency and illumination phase is a prerequisite for achieving artifact-free SR-SIM imaging. The inversion of SR-SIM images based on Bayesian theory allows automatic acquisition of parameters and reduces the number of reconstructed original images, which is helpful for the realization of fast automatic imaging. The Hessian-SIM algorithm automatically filters the original image to reduce artifacts and uses methods such as rolling reconstruction to achieve fast and long-term imaging (Fig.5). To promote the development of SR-SIM, FairSIM and SIMcheck have been developed to provide general reconstruction algorithms. OpenSIM and SIMToolbox provide open-source codes to help researchers further study SIM-RA. In addition, machine learning is also used to achieve fast SR-SIM image reconstruction. At the end of the article, five problems to be solved in the current development of super-resolution structured illumination microscopy image reconstruction algorithms are summarized.

Conclusion and Prospect The super-resolution SIM image reconstruction algorithm has a decisive influence on the imaging quality and imaging speed of super-resolution SIM. To achieve fast, stable, and automatic acquisition of high-quality, high-temporal-resolution super-resolution SIM images without artifacts, it is necessary to build better imaging algorithms. Excellent SIM-RA is necessary for reconstructing higher-resolution, faster, longer, and nondestructive SR-SIM images.

刘智, 罗泽伟, 王正印, 涂壮, 庄正飞, 陈同生. 基于结构照明的超分辨荧光显微成像重建算法[J]. 中国激光, 2021, 48(3): 0307001. Zhi Liu, Zewei Luo, Zhengyin Wang, Zhuang Tu, Zhengfei Zhuang, Tongsheng Chen. Super-Resolution Fluorescence Microscopy Image Reconstruction Algorithm Based on Structured Illumination[J]. Chinese Journal of Lasers, 2021, 48(3): 0307001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!