Photonics Research, 2019, 7 (8): 08000883, Published Online: Jul. 23, 2019   

Adaptive cavity-enhanced dual-comb spectroscopy Download: 704次

Author Affiliations
1 State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2 Department of Physics, 366 Le Conte Hall MS 7300, University of California, Berkeley, California 94720, USA
Copy Citation Text

Weipeng Zhang, Xinyi Chen, Xuejian Wu, Yan Li, Haoyun Wei. Adaptive cavity-enhanced dual-comb spectroscopy[J]. Photonics Research, 2019, 7(8): 08000883.

References

[1] B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, J. Ye. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature, 2016, 533: 517-520.

[2] B. J. Bjork, T. Q. Bui, O. H. Heckl, P. B. Changala, B. Spaun, P. Heu, D. Follman, C. Deutsch, G. D. Cole, M. Aspelmeyer, M. Okumura, J. Ye. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science, 2016, 354: 444-448.

[3] C. A. Alrahman, A. Khodabakhsh, F. M. Schmidt, Z. Qu, A. Foltynowicz. Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame. Opt. Express, 2014, 22: 13889-13895.

[4] M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, J. Ye. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express, 2008, 16: 2387-2397.

[5] S. Coburn, C. B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N. R. Newbury, K. Prasad, I. Coddington, G. B. Rieker. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica, 2018, 5: 320-327.

[6] K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, N. R. Newbury. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica, 2017, 4: 724-728.

[7] R. J. Jones, I. Thomann, J. Ye. Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A, 2004, 69: 051803.

[8] R. J. Jones, J.-C. Diels. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett., 2001, 86: 3288-3291.

[9] A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett., 2011, 107: 233002.

[10] N. Hoghooghi, R. J. Wright, A. S. Makowiecki, W. C. Swann, E. M. Waxman, I. Coddington, G. B. Rieker. Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica, 2019, 6: 28-33.

[11] F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem., 2010, 3: 175-205.

[12] M. J. Thorpe, J. Ye. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B, 2008, 91: 397-414.

[13] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 2006, 311: 1595-1599.

[14] L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, E. A. Cornell. Frequency comb velocity-modulation spectroscopy. Phys. Rev. Lett., 2011, 107: 093002.

[15] M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, J. Ye. Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett., 2009, 468: 1-8.

[16] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 2007, 445: 627-630.

[17] L. Rutkowski, J. Morville. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy. J. Quantum Spectrosc. Radiat. Transfer, 2017, 187: 204-214.

[18] L. Rutkowski, J. Morville. Broadband cavity-enhanced molecular spectra from Vernier filtering of a complete frequency comb. Opt. Lett., 2014, 39: 6664-6667.

[19] C. Gohle, B. Stein, A. Schliesser, T. Udem, T. W. Hänsch. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett., 2007, 99: 263902.

[20] L. Rutkowski, A. C. Johansson, G. Zhao, T. Hausmaninger, A. Khodabakhsh, O. Axner, A. Foltynowicz. Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution. Opt. Express, 2017, 25: 21711-21718.

[21] A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, D. F. Plusquellic. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express, 2016, 24: 10424-10434.

[22] B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics, 2010, 4: 55-57.

[23] M. L. Weichman, P. B. Changala, J. Ye, Z. Chen, M. Yan, N. Picqué. Broadband molecular spectroscopy with optical frequency combs. J. Mol. Spectrosc., 2019, 355: 66-78.

[24] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 2019, 13: 146-157.

[25] Z. Chen, M. Yan, T. W. Hänsch, N. Picqué. A phase-stable dual-comb interferometer. Nat. Commun., 2018, 9: 3035.

[26] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 2016, 3: 414-426.

[27] I. Coddington, W. C. Swann, N. R. Newbury. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett., 2008, 100: 013902.

[28] P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express, 2008, 16: 4347-4365.

[29] X. Shen, M. Yan, Q. Hao, K. Yang, H. Zeng. Adaptive dual-comb spectroscopy with 1200-h continuous operation stability. IEEE Photon. J., 2018, 10: 1503309.

[30] T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T. W. Hänsch. Adaptive real-time dual-comb spectroscopy. Nat. Commun., 2014, 5: 3375.

[31] Z. Zhu, K. Ni, Q. Zhou, G. Wu. Digital correction method for realizing a phase-stable dual-comb interferometer. Opt. Express, 2018, 26: 16813-16823.

[32] J. Roy, J.-D. Deschênes, S. Potvin, J. Genest. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express, 2012, 20: 21932-21939.

[33] J.-D. Deschênes, P. Giaccari, J. Genest. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt. Express, 2010, 18: 23358-23370.

[34] G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, D. A. Long. Frequency-agile, rapid scanning spectroscopy. Nat. Photonics, 2013, 7: 532-534.

[35] A. J. Fleisher, D. A. Long, J. T. Hodges. Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy. J. Mol. Spectrosc., 2018, 352: 26-35.

[36] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E. J. Zak. The HITRAN2016 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transfer, 2017, 203: 3-69.

[37] A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, J. Ye. Optical frequency comb spectroscopy. Faraday Discuss., 2011, 150: 23-31.

[38] W. Zhang, H. Wei, X. Chen, Y. Li. Sensitivity improvement by optimized optical switching and curve fitting in a cavity ring-down spectrometer. Appl. Opt., 2018, 57: 8487-8493.

[39] X. Chen, W. Zhang, H. Wei, Y. Li. Digitally calibrated broadband gases absorption spectral measurements. Chin. Phys. B, 2019, 28: 060703.

Weipeng Zhang, Xinyi Chen, Xuejian Wu, Yan Li, Haoyun Wei. Adaptive cavity-enhanced dual-comb spectroscopy[J]. Photonics Research, 2019, 7(8): 08000883.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!