Photonics Research, 2018, 6 (1): 01000030, Published Online: Jul. 19, 2018   

Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns Download: 613次

Author Affiliations
1 School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, South Korea
2 Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
Copy Citation Text

Kyung Rock Son, Byeong Ryong Lee, Min Ho Jang, Hyun Chul Park, Yong Hoon Cho, Tae Geun Kim. Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns[J]. Photonics Research, 2018, 6(1): 01000030.

References

[1] P. Yeh, N. Yeh, C.-H. Lee, T.-J. Ding. Applications of LEDs in optical sensors and chemical sensing device for detection of biochemical, heavy metals, and environmental nutrients. Renew. Sustain. Energy Rev., 2017, 75: 461-468.

[2] H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M. P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, H.-C. Kuo. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diodes display by a lithographic-fabricated photoresist mold. Photon. Res., 2017, 5: 411-416.

[3] K. Song, M. Mohseni, F. Taghipour. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review. Water Res., 2016, 94: 341-349.

[4] Y. Muramoto, M. Kimura, S. Nouda. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol., 2014, 29: 084004.

[5] M. Krames, N. Grandjean. Light-emitting diodes technology and applications: introduction. Photon. Res., 2017, 5: LED1-LED2.

[6] J. S. Speck, S. J. Rosner. The role of threading dislocations in the physical properties of GaN and its alloys. Physica B, 1999, 273–274: 24-32.

[7] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, S. Sakai. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys., 1998, 37: L398-L400.

[8] N. Grandjean, B. Damilano, S. Damasso, M. Leroux, M. Laugt, J. Massies. Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. J. Appl. Phys., 1999, 86: 3714-3720.

[9] A. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, R. Collazo. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett., 2015, 106: 142107.

[10] F. Wu, H. Sun, I. A. AJia, I. S. Roqan, D. Zhang, J. Dai, C. Chen, Z. C. Feng, X. Li. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ∼350  nm via step quantum well structure design. J. Phys. D, 2017, 50: 245101.

[11] E. C. Young, B. P. Yonkee, F. Wu, B. K. Saifaddin, D. A. Cohen, S. P. DenBaars, S. Nakamura, J. S. Speck. Ultraviolet light emitting diodes by ammonia molecular beam epitaxy on metamorphic AlGaN/GaN buffer layers. J. Cryst. Growth, 2015, 425: 389-392.

[12] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275  nm achieved by improving light-extraction efficiency. Appl. Phys. Express, 2017, 10: 031002.

[13] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater., 2004, 3: 601-605.

[14] M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, S.-J. Park. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater., 2008, 20: 1253-1257.

[15] S.-H. Hong, J.-J. Kim, J.-W. Kang, Y.-S. Jung, D.-Y. Kim, S.-Y. Yim, S.-J. Park. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles. Nanotechnology, 2015, 26: 385204.

[16] K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, J. Kang. Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons. Sci. Rep., 2014, 4: 4380.

[17] J. Yin, Y. Li, S. Chen, J. Li, J. Kang, W. Li, P. Jin, Y. Chen, Z. Wu, J. Dai, Y. Fang, C. Chen. Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells. Adv. Opt. Mater., 2014, 2: 451-458.

[18] C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, B. Shen. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Sci. Rep., 2017, 7: 2358.

[19] S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, H. Yanagi. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90  mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett., 2015, 106: 131104.

[20] S.-I. Inoue, N. Tamari, M. Taniguchi. 150  mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonics light-extraction structure emitting at 265  nm. Appl. Phys. Lett., 2017, 110: 141106.

[21] Q.-A. Ding, K. Li, F. Kong, J. Zhao, Q. Yue. Improving the vertical light extraction efficiency of GaN-based thin-film flip-chip LED with double embedded photonics crystals. IEEE J. Quantum Electron., 2015, 51: 3300109.

[22] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419-422.

[23] P. Nordlander. The ring: a leitmotif in plasmonics. ACS Nano, 2009, 3: 488-492.

[24] J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzalez, A. S. Brown, M. Losurdo, H. O. Everitt, F. Moreno. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects. J. Phys. Chem. C, 2013, 117: 19606-19615.

[25] C. L. Haynes, R. P. Van Duyne. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B, 2001, 105: 5599-5611.

[26] Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, L. Zhang. Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays. Photon. Res., 2017, 5: 280-286.

[27] E. Prodan, P. Nordlander. Electronic structure and polarizability of metallic nanoshells. Chem. Phys. Lett., 2002, 352: 140-146.

[28] S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, H. Okumura. Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells. Appl. Phys. Lett., 2001, 79: 4319-4321.

[29] Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, S. P. DenBaars. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett., 1998, 73: 1370-1372.

[30] W. F. Yang, Y. N. Xie, R. Y. Liao, J. Sun, Z. Y. Wu, L. M. Wong, S. J. Wang, C. F. Wang, A. Y. S. Lee, H. Gong. Enhancement of bandgap emission of Pt-capped MgZnO films: important role of light extraction versus exciton-plasmon coupling. Opt. Express, 2012, 20: 14556-14563.

Kyung Rock Son, Byeong Ryong Lee, Min Ho Jang, Hyun Chul Park, Yong Hoon Cho, Tae Geun Kim. Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns[J]. Photonics Research, 2018, 6(1): 01000030.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!