Photonics Research, 2020, 8 (6): 06000904, Published Online: May. 18, 2020  

Frequency comb swept laser with a high-Q microring filter Download: 632次

Author Affiliations
1 Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
2 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
3 Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
4 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
Copy Citation Text

Dongmei Huang, Feng Li, Chao Shang, Zihao Cheng, S. T. Chu, P. K. A. Wai. Frequency comb swept laser with a high-Q microring filter[J]. Photonics Research, 2020, 8(6): 06000904.

References

[1] D.-P. Zhou, Z. Qin, W. Li, L. Chen, X. Bao. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. Express, 2012, 20: 13138-13145.

[2] D. Chen, C. Shu, S. He. Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser. Opt. Lett., 2008, 33: 1395-1397.

[3] C.-Y. Ryu, C.-S. Hong. Development of fiber Bragg grating sensor system using wavelength-swept fiber laser. Smart Mater. Struct., 2002, 11: 468-473.

[4] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 2006, 14: 3225-3237.

[5] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 2005, 13: 3513-3528.

[6] M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, B. J. Vakoc. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics, 2018, 12: 111-116.

[7] T. Klein, R. Huber. High-speed OCT light sources and systems [Invited]. Biomed. Opt. Express, 2017, 8: 828-859.

[8] W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, R. Huber. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomed. Opt. Express, 2014, 5: 2963-2977.

[9] J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. Biomed. Opt. Express, 2015, 6: 1340-1350.

[10] A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser. Optical coherence tomography—principles and applications. Rep. Prog. Phys., 2003, 66: 239-303.

[11] A.-H. Dhalla, D. Nankivil, J. A. Izatt. Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival. Biomed. Opt. Express, 2012, 3: 633-649.

[12] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 2006, 31: 2975-2977.

[13] J. Zhang, J. Jing, P. Wang, Z. Chen. Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography. Opt. Lett., 2011, 36: 4788-4790.

[14] M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, M. Rollins. Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser. Opt. Express, 2007, 15: 6251-6267.

[15] J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, R. Huber. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates. Biomed. Opt. Express, 2018, 9: 120-130.

[16] K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, J. P. Rolland. Broadband Fourier-domain mode-locked lasers. Photon. Sens., 2011, 1: 222-227.

[17] D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, R. A. Huber. Extended coherence length Fourier domain mode locked lasers at 1310 nm. Opt. Express, 2011, 19: 20930-20939.

[18] W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 2012, 3: 2647-2657.

[19] T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, R. Huber. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography. Biomed. Opt. Express, 2018, 9: 4130-4148.

[20] LiF.NakkeeranK.KutzJ. N.YuanJ.KangZ.ZhangX.WaiP. K. A., “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

[21] J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, R. Huber. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS ONE, 2019, 14: e0213144.

[22] N. Lippok, B. E. Bouma, B. J. Vakoc. Stable multi-megahertz circular-ranging optical coherence tomography at 13 μm. Biomed. Opt. Express, 2020, 11: 174-185.

[23] T.-H. Tsai, C. Zhou, D. C. Adler, J. G. Fujimoto. Frequency comb swept lasers. Opt. Express, 2009, 17: 21257-21270.

[24] S. Tozburun, M. Siddiqui, B. J. Vakoc. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express, 2014, 22: 3414-3424.

[25] T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, K. K. Y. Wong. An ultrafast wideband discretely swept fiber laser. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 8800105.

[26] M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, P. K. A. Wai. Time and Fourier domain jointly mode locked frequency comb swept fiber laser. Opt. Express, 2017, 25: 32705-32712.

[27] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 2012, 6: 480-487.

[28] D. T. Spencer, J. F. Bauters, M. J. R. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 2014, 1: 153-157.

[29] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4: 619-624.

[30] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, W. Zhao. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 2018, 43: 2002-2005.

[31] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 2012, 3: 765.

[32] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7: 597-607.

[33] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-560.

[34] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361: eaan8083.

[35] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[36] CenZ.LiF.LiQ.WaiP. K. A., “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Dongmei Huang, Feng Li, Chao Shang, Zihao Cheng, S. T. Chu, P. K. A. Wai. Frequency comb swept laser with a high-Q microring filter[J]. Photonics Research, 2020, 8(6): 06000904.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!