激光与光电子学进展, 2018, 55 (10): 102702, 网络出版: 2018-10-14   

基于量子反馈保护量子比特的相干性 下载: 509次

Protection of Quantum Coherence of Qubit Based on Quantum Feedback
作者单位
1 湖南工业大学理学院, 湖南 株洲 412007
2 长沙学院电子与通信工程系, 湖南 长沙 410022
引用该论文

王国友, 郭有能. 基于量子反馈保护量子比特的相干性[J]. 激光与光电子学进展, 2018, 55(10): 102702.

Wang Guoyou, Guo Youneng. Protection of Quantum Coherence of Qubit Based on Quantum Feedback[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102702.

参考文献

[1] Wang J, Wiseman H M, Milburn G J. Dynamical creation of entanglement by homodyne-mediated feedback[J]. Physical Review A, 2005, 71(4): 042309.

[2] Carvalho A R R, Reid A J S, Hope J J. Controlling entanglement by direct quantum feedback[J]. Physical Review A, 2008, 78(1): 012334.

[3] Li Y, Luo B, Guo H. Entanglement and quantum discord dynamics of two atoms under practical feedback control[J]. Physical Review A, 2011, 84(1): 012316.

[4] 杨秀丽, 孙童, 张博, 等. 经典场辅助下的三原子量子纠缠动力学[J]. 光学学报, 2016, 36(12): 1227001.

    Yang X L, Sun T, Zhang B, et al. Classical-field-assisted three-atom quantum entanglement dynamics[J]. Acta Optica Sinica, 2016, 36(12): 1227001.

[5] 邱昌东, 卢道明. 两维耦合腔系统中的纠缠特性[J]. 光学学报, 2016, 36(5): 0527001.

    Qiu C D, Lu D M. Entanglement characteristics in two-dimensional coupled cavity systems[J]. Acta Optica Sinica, 2016, 36(5): 0527001.

[6] 闫丽. 两子系统间纠缠演化特性[J]. 激光与光电子学进展, 2017, 54(3): 032701.

    Yan L. Evolution property of entanglement between two subsystems[J]. Laser & Optoelectronics Progress, 2017, 54(3): 032701.

[7] Baumgratz T, Cramer M, Plenio M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401.

[8] Shao L H, Xi Z J, Fan H, et al. Fidelity and trace-norm distances for quantifying coherence[J]. Physical Review A, 2015, 91(4): 042120.

[9] Rana S, Parashar P, Lewenstein M. Trace-distance measure of coherence[J]. Physical Review A, 2016, 93(1): 012110.

[10] Streltsov A, Singh U, Dhar H S, et al. Measuring quantum coherence with entanglement[J]. Physical Review Letters, 2015, 115(2): 020403.

[11] Ma J, Yadin B, Girolami D, et al. Converting coherence to quantum correlations[J]. Physical Review Letters, 2016, 116(16): 160407.

[12] Girolami D. Observable measure of quantum coherence in finite dimensional systems[J]. Physical Review Letters, 2014, 113(17): 170401.

[13] Pires D P, Céleri L C, Soares-Pinto D O. Geometric lower bound for a quantum coherence measure[J]. Physical Review A, 2015, 91(4): 042330.

[14] Winter A, Yang D. Operational resource theory of coherence[J]. Physical Review Letters, 2016, 116(12): 120404.

[15] Singh U, Bera M N, Dhar H S, et al. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness[J]. Physical Review A, 2015, 91(5): 052115.

[16] Chitambar E, Streltsov A, Rana S, et al. Assisted distillation of quantum coherence[J]. Physical Review Letters, 2016, 116(7): 070402.

[17] Wiseman H M, Milburn G J. Quantum theory of optical feedback via homodyne detection[J]. Physical Review Letters, 1993, 70(5): 548-551.

[18] Wiseman H M. Quantum theory of continuous feedback[J]. Physical Review A, 1994, 49(3): 2133-2150.

[19] Wiseman H M. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution[J]. Physical Review Letters, 1995, 75(25): 4587-4590.

[20] Geremia J M, Stockton J K, Mabuchi H. Real-time quantum feedback control of atomic spin-squeezing[J]. Science, 2004, 304(5668): 270-273.

[21] Reiner J E, Smith W P, Orozco L A, et al. Quantum feedback in a weakly driven cavity QED system[J]. Physical Review A, 2004, 70(2): 023819.

[22] Bushev P, Rotter D, Wilson A, et al. Feedback cooling of a single trapped ion[J]. Physical Review Letters, 2006, 96(4): 043003.

[23] Zheng Q, Ge L, Yao Y, et al. Enhancing parameter precision of optimal quantum estimation by direct quantum feedback[J]. Physical Review A, 2015, 91(3): 033805.

[24] Wang L C, Huang X L, Yi X X. Effect of feedback on the control of a two-level dissipative quantum system[J]. Physical Review A, 2008, 78(5): 052112.

[25] Sun H Y, Shu P L, Li C, et al. Feedback control on geometric phase in dissipative two-level systems[J]. Physical Review A, 2009, 79(2): 022119.

[26] 廖庆洪, 许娟, 鄢秋荣, 等. 缀饰态表象下驱动原子和场相互作用系统的纠缠和熵压缩调控[J]. 中国激光, 2015, 42(5): 0518001.

    Liao Q H, Xu J, Yan Q R, et al. Control of entanglement and entropy squeezing of the atom driven by a classical field interacting with field under the dressed-state representation[J]. Chinese Journal of Lasers, 2015, 42(5): 0518001.

王国友, 郭有能. 基于量子反馈保护量子比特的相干性[J]. 激光与光电子学进展, 2018, 55(10): 102702. Wang Guoyou, Guo Youneng. Protection of Quantum Coherence of Qubit Based on Quantum Feedback[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102702.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!