强激光与粒子束, 2016, 28 (9): 92001, 网络出版: 2020-12-07  

惯性约束聚变靶丸玻璃微观结构的分子动力学模拟

Molecular dynamic simulation of the microstructure of inertial confinement fusion glass target
作者单位
兰州大学 核科学与技术学院, 兰州 730000
引用该论文

南帅, 袁伟, 王铁山, 彭海波, 陈亮, 杜鑫, 张多飞, 律鹏. 惯性约束聚变靶丸玻璃微观结构的分子动力学模拟[J]. 强激光与粒子束, 2016, 28(9): 92001.

Nan Shuai, Yuan Wei, Wang Tieshan, Peng Haibo, Chen Liang, Du Xin, Zhang Duofei, Lü Peng. Molecular dynamic simulation of the microstructure of inertial confinement fusion glass target[J]. High Power Laser and Particle Beams, 2016, 28(9): 92001.

参考文献

[1] 邱龙会, 魏芸, 唐永建, 等. 液滴法制备空心玻璃微球的过程分析[J]. 原子能科学技术, 2001, 35(1): 60-64.(Qiu Longhui, Wei Yun, Tang Yongjian, et al. Analysis on the formation process of hollow glass microspheres fabricated by liquid droplet method. Atomic Energy Science and Technology, 2001, 35(1): 60-64)

[2] Hooper Jr C F, Kilcrease D P, Mancini R C, et al. Time-resolved spectroscopic measurements of high density in Ar-filled microballoon implosions[J]. Physical Review Letters, 1989, 63(3): 267-270.

[3] 李波, 张占文, 王朝阳, 等. 新型充Ar靶丸设计[J]. 原子能科学技术, 2005, 39(1): 58-60.(Li Bo, Zhang Zhanwen, Wang Chaoyang,et al. Design of capsules capable of argon-filling. Atomic Energy Science and Technology, 2005, 39(1): 58-60)

[4] 张占文, 唐永建, 李波, 等. 空心玻璃微球热扩散法充Ar[J]. 原子能科学技术, 2007, 41(5): 618-622.(Zhang Zhanwen, Tang Yongjian, Li Bo, et al. Filling hollow glass microspheres with Ar by method of glass diffusion. Atomic Energy Science and Technology, 2007, 41(5): 618-622)

[5] 漆小波, 唐永建, 李波, 等. 激光聚变靶用空心玻璃微球的成分设计[J]. 玻璃与搪瓷, 2005, 33(6): 34-40.(Qi Xiaobo, Tang Yongjian, Li Bo, et al. Composition design of hollow glass microspheres for ICF experiment. Glass & Enamel, 2005, 33(6): 34-40)

[6] Delaye J, Louis-Achille V, Ghaleb D, et al. Modeling oxide glasses with Born-Mayer-Huggins potentials: effect of composition on structural changes[J]. Journal of Non-crystalline Solids,1997, 210(2): 232-242.

[7] Gou F, Greaves G N, Smith W, et al. Molecular dynamics simulation of sodium borosilicate glasses[J]. Journal of Non-Crystalline Solids, 2001, 293: 539-546.

[8] Gruenhut S, Amini M, MacFarlane D R, et al. Molecular dynamics glass simulation and equilibration techniques[J]. Molecular Simulation, 1997, 19(3): 139-160.

[9] Deladerriere N, Delaye J M, Augereau F, et al. Molecular dynamics study of acoustic velocity in silicate glass under irradiation[J]. Journal of Nuclear Materials, 2008, 375(1): 120-134.

[10] Delaye J M, Peuget S, Bureau G, et al. Molecular dynamics simulation of radiation damage in glasses[J]. Journal of Non-Crystalline Solids, 2011, 357: 2763-2768.

[11] Kilymis D A, Delaye J M. Nanoindentation of pristine and disordered silica: molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2013, 382: 87-94.

[12] Kilymis D A, Delaye J M. Nanoindentation studies of simplified nuclear glasses using molecular dynamics[J]. Journal of Non-Crystalline Solids, 2014, 401: 147-153.

[13] Kerrache A, Delaye J M. Interstitial sites for He incorporation in nuclear glasses and links to the structure: Results from numerical investigation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 326: 269-272.

[14] Todorov I T, Smith W, Trachenko K, et al. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism[J]. Journal of Materials Chemistry, 2006, 16(20): 1911-1918.

[15] Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1990, 430(1879): 285-313.

[16] Kieu L H, Delaye J M, Cormier L, et al. Development of empirical potentials for sodium borosilicate glass systems[J]. Journal of Non-Crystalline Solids, 2011, 357(18): 3313-3321.

[17] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.

[18] Leroux S, Jund P. Ring statistics analysis of topological networks: New approach and application to amorphons GeS2 and SiO2 systems[J]. Computational Materials Science, 2011, 49: 70-83.

[19] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. (Chen Zhenglong, Xu Weiren, Tang Lida. Molecular dynamics simulation theory and practice. Beijing: Chemical Indusry Press, 2007)

[20] Fábián M, Jóvári P, Svab E, et al. Network structure of 0.7 SiO2-0.3 Na2O glass from neutron and X-ray diffraction and RMC modelling[J]. Journal of Physics: Condensed Matter, 2007, 19: 335209.

[21] Grimley D I, Wright A C, Sinclair R N. Neutron scattering from vitreous silica IV. Time-of-flight diffraction[J]. Journal of Non-Crystalline Solids, 1990, 119(1): 49-64.

[22] Petkov V, Billinge S J L, Shastri S D, et al. Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy X-ray diffraction[J]. Physical Review Letters, 2000, 85(16): 3436-3439.

[23] Mozzi R L, Warren B E. The structure of vitreous boron oxide[J]. Journal of Applied Crystallography, 1970, 3(4): 251-257.

[24] McKeown D A, Waychunas G A, Brown G E. EXAFS and XANES study of the local coordination environment of sodium in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system[J]. Journal of Non-Crystalline Solids, 1985, 74(2/3): 325-348.

[25] Yun Y H, Bray P J. Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2[J]. Journal of Non-Crystalline Solids, 1978, 27(3): 363-380.

[26] Malavasi G, Menziani M C, Pedone A, et al. Void size distribution in MD-modelled silica glass structures[J]. Journal of Non-Crystalline Solids, 2006, 352(3): 285-296.

南帅, 袁伟, 王铁山, 彭海波, 陈亮, 杜鑫, 张多飞, 律鹏. 惯性约束聚变靶丸玻璃微观结构的分子动力学模拟[J]. 强激光与粒子束, 2016, 28(9): 92001. Nan Shuai, Yuan Wei, Wang Tieshan, Peng Haibo, Chen Liang, Du Xin, Zhang Duofei, Lü Peng. Molecular dynamic simulation of the microstructure of inertial confinement fusion glass target[J]. High Power Laser and Particle Beams, 2016, 28(9): 92001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!