Chinese Optics Letters, 2021, 19 (2): 022601, Published Online: Jan. 4, 2021  

Evolution of spin density vectors in a strongly focused composite field Download: 660次

Author Affiliations
1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
2 School of Physics & Information Technology, Shaanxi Normal University, Xi’an 710061, China
Copy Citation Text

Xiaoyan Pang, Chen Feng, Xinying Zhao. Evolution of spin density vectors in a strongly focused composite field[J]. Chinese Optics Letters, 2021, 19(2): 022601.

References

[1] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 2014, 5: 3300.

[2] T. Bauer, M. Neugebauer, G. Leuchs, P. Banzer. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett., 2016, 117: 013601.

[3] C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110: 213604.

[4] M. Neugebauer, T. Bauer, P. Banzer, G. Leuchs. Polarization tailored light driven directional optical nanobeacon. Nano Lett., 2014, 14: 2546.

[5] A. Aiello, N. Lindlein, C. Marquardt, G. Leuchs. Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett., 2009, 103: 100401.

[6] J. Korger, A. Aiello, V. Chille, P. Banzer, C. Wittmann, N. Lindlein, C. Marquardt, G. Leuchs. Observation of the geometric spin Hall effect of light. Phys. Rev. Lett., 2014, 112: 113902.

[7] A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photon., 2015, 9: 789.

[8] A. Aiello, P. Banzer. The ubiquitous photonic wheel. J. Opt., 2016, 18: 085605.

[9] W. Miao, X. Pang, W. Liu. Photonic wheels and their topological reaction in a strongly focused amplitude tailored beam. IEEE Photon. J., 2020, 12: 6500709.

[10] X. Pang, W. Miao. Spinning spin density vectors along the propagation direction. Opt. Lett., 2018, 43: 4831.

[11] J. S. Eismann, P. Banzer, M. Neugebauer. Spin-orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res., 2019, 1: 033143.

[12] J. Zhuang, L. Zhang, D. Deng. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam. Opt. Lett., 2020, 45: 296.

[13] Z. Man, X. Dou, H. P. Urbach. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams. Opt. Commun., 2020, 458: 124790.

[14] X. Pang, C. Feng, B. Nyamdorj, X. Zhao. Hidden singularities in 3D optical fields. J. Opt., 2020, 22: 115605.

[15] BornM.WolfE., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

[16] T. D. Visser, E. Wolf. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields. Opt. Commun., 2010, 283: 3371.

[17] M.-S. Kim, T. Scharf, C. Rockstuhl, H. P. Herzig. Phase anomalies in micro-optics. Prog. Opt., 2013, 58: 115.

[18] J. F. Federici, R. L. Wample, D. Rodriguez, S. Mukherjee. Application of terahertz Gouy phase shift from curved surfaces for estimation of crop yield. Appl. Opt., 2009, 48: 1382.

[19] X. Pang, D. G. Fischer, T. D. Visser. Wavefront spacing and Gouy phase in presence of primary spherical aberration. Opt. Lett., 2014, 39: 88.

[20] J. Zhang, X. Pang, J. Ding. Wavefront spacing and Gouy phase in strongly focused fields: the role of polarization. J. Opt. Soc. Am. A, 2017, 34: 1132.

[21] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292: 912.

[22] S. M. Baumann, D. M. Kalb, L. H. MacMillan, E. J. Galvez. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express, 2009, 17: 9818.

[23] A. Forbes. Controlling light’s helicity at the source: orbital angular momentum states from lasers. Phil. Trans. R. Soc. A., 2017, 375: 20150436.

[24] S. Wei, D. Wang, J. Lin, X. Yuan. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv., 2018, 1: 180006.

[25] X. Yang, S. Wei, S. Kou, F. Yuan, E. Cheng. Misalignment measurement of optical vortex beam in free space. Chin. Opt. Lett., 2019, 17: 090604.

[26] T. Lin, A. Liu, X. Zhang, H. Li, L. Wang, H. Han, Z. Chen, X. Liu, H. Lü. Analyzing OAM mode purity in optical fibers with CNN-based deep learning. Chin. Opt. Lett., 2019, 17: 100603.

[27] X. Yan, L. Guo, M. Cheng, S. Chai. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett., 2019, 17: 040101.

[28] G. Indebetouw. Optical vortices and their propagation. J. Mod. Opt., 1993, 40: 73.

[29] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 1959, 253: 358.

Xiaoyan Pang, Chen Feng, Xinying Zhao. Evolution of spin density vectors in a strongly focused composite field[J]. Chinese Optics Letters, 2021, 19(2): 022601.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!