中国激光, 2017, 44 (8): 0801006, 网络出版: 2017-09-13   

基于光纤可饱和吸收体的1993 nm纳秒脉冲掺铥全光纤双腔激光器 下载: 878次

1993 nm Nanosecond Pulse Generation from Tm-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Saturable Absorber
作者单位
北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
引用该论文

刘伟, 金东臣, 孙若愚, 张倩, 侯玉斌, 沈默, 刘江, 王璞. 基于光纤可饱和吸收体的1993 nm纳秒脉冲掺铥全光纤双腔激光器[J]. 中国激光, 2017, 44(8): 0801006.

Liu Wei, Jin Dongchen, Sun Ruoyu, Zhang Qian, Hou Yubin, Shen Mo, Liu Jiang, Wang Pu. 1993 nm Nanosecond Pulse Generation from Tm-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Saturable Absorber[J]. Chinese Journal of Lasers, 2017, 44(8): 0801006.

参考文献

[1] 张岩, 张鹏, 刘鹏, 等. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.

    Zhang Yan, Zhang Peng, Liu Peng, et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

[2] Popmintchev T, Chen M C, Arpin P, et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 2010, 4(12): 822-832.

[3] HoneaE, Savage-LeuchsM, Bowers MS, et al. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser[C]. SPIE, 2013, 8601: 860111.

[4] ScholleK, LamriniS, KoopmannP, et al. 2 μm laser sources and their possible applications[M] // Frontiers in Guided Wave Optics and Optoelectronics. Croatia: InTech, 2010.

[5] Li Z, Heidt A M. Daniel J M O, et al. Thulium-doped fiber amplifier for optical communications at 2 μm[J]. Optics Express, 2013, 21(8): 9289-9297.

[6] Cariou J P, Augere B, Valla M. Laser source requirements for coherent lidars based on fiber technology[J]. Comptes Rendus Physique, 2006, 7(2): 213-223.

[7] 朱磊, 王鹿鹿, 董新永, 等. 基于高掺锗石英光纤的中红外超连续谱产生[J]. 光学学报, 2016, 36(3): 0319001.

    Zhu Lei, Wang Lulu, Dong Xinyong, et al. Mid-infrared supercontinuum generation with highly germanium-doped silica fiber[J]. Acta Optica Sinica, 2016, 36(3): 0319001.

[8] El-Sherif A F, King T A. High-energy, high brightness Q-switched Tm 3+-doped fiber laser using an electro-optic modulator [J]. Optics Communications, 2003, 218(4/5/6): 337-344.

[9] Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm 3+-doped silica 2 μm fiber laser pumped at 792 nm [J]. Optics Letters, 2007, 32(19): 2780-2782.

[10] Jiang M, Tayebati P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser[J]. Optics Letters, 2007, 32(13): 1797-1799.

[11] Simakov N, Hemming A, Bennetts S, et al. Efficient, polarized, gain-switched operation of a Tm-doped fiber laser[J]. Optics Express, 2011, 19(16): 14949-14954.

[12] Spuhler G J, Paschotta R, Fluck R, et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J]. Journal of the Optical Society of America B, 1999, 16(3): 376-388.

[13] Liu J, Wang Y G, Qu Z H, et al. 2 μm passive Q-switched mode-locked Tm 3+…YAP laser with single-walled carbon nanotube absorber [J]. Optics and Laser Technology, 2012, 44(4): 960-962.

[14] Jiang M, Ma H F, Ren Z Y, et al. A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm[J]. Laser Physics Letters, 2013, 10(5): 055103.

[15] Moore S W. Soh D B S, Bisson S E, et al. 400 μJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb 3+-doped fiber saturable absorber [J]. Optics Express, 2012, 20(21): 23778-23789.

[16] Lu Y, Gu X J. All-fiber passively Q-switched fiber laser with a Sm-doped fiber saturable absorber[J]. Optics Express, 2013, 21(2): 1997-2002.

[17] Dvoyrin V V, Mashinsky V M, Dianov E M. Yb-Bi pulsed fiber lasers[J]. Optics Letters, 2007, 32(5): 451-453.

[18] Soh D B S, Bisson S E, Patterson B D, et al. . High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations[J]. Optics Letters, 2010, 36(13): 2536-2538.

[19] Toredella L, Djellout H, Dussardier B, et al. High repetition rate passively Q-switched Nd 3+…Cr 4+ all-fibre laser [J]. Electronics Letters, 2003, 39(18): 1307-1308.

[20] Fotiadi AA, Kurkov AS, Razdobreev IM. All-fiber passively Q-switched ytterbium laser[C]. 2005 Conference on Lasers and Electro-Optics Europe, 2005: 515.

[21] Jackson S D. Passively Q-switched Tm 3+-doped silica fiber lasers [J]. Applied Optics, 2007, 46(16): 3311-3317.

[22] Tsai T Y, Fang Y C, Lee Z C, et al. All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch[J]. Optics Letters, 2009, 34(19): 2891-2893.

[23] Tsai T Y, Fang Y C, Huang H M, et al. Saturable absorber Q- and gain-switched all-Yb 3+ all-fiber laser at 976 and 1064 nm [J]. Optics Express, 2010, 18(23): 23523-23528.

[24] Tsai T Y, Tsao H X, Huang C L, et al. 1590-nm-pumped passively Q-switched thulium all-fiber laser at 1900 nm[J]. Optics Express, 2015, 23(9): 11205-11210.

[25] Jin D C, Sun R Y, Shi H X, et al. Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings[J]. Optics Express, 2013, 21(22): 26027-26033.

[26] Jin DC, Sun RY, Wei SY, et al. High pulse-energy generation from a monolithic Yb-doped all-fiber dual-cavity laser with fiber-based passive Q-switch[C]. Conference of Advanced Solid State Lasers, 2014: AM5A. 40.

[27] 金东臣, 孙若愚, 魏守宇, 等. 基于光纤被动调Q的1570 nm纳秒脉冲铒镱共掺全光纤双腔激光器[J]. 中国激光, 2015, 42(10): 1002006.

    Jin Dongchen, Sun Ruoyu, Wei Shouyu, et al. 1570 nm nanosecond pulse generation from Er/Yb co-doped all-fiber dual-cavity laser with fiber-based passive Q-switched[J]. Chinese J Lasers, 2015, 42(10): 1002006.

[28] Herda R, Kivistö S, Okhotnikov O G. Dynamic gain induced pulse shortening in Q-switched lasers[J]. Optics Letters, 2008, 33(8): 1011-1013.

刘伟, 金东臣, 孙若愚, 张倩, 侯玉斌, 沈默, 刘江, 王璞. 基于光纤可饱和吸收体的1993 nm纳秒脉冲掺铥全光纤双腔激光器[J]. 中国激光, 2017, 44(8): 0801006. Liu Wei, Jin Dongchen, Sun Ruoyu, Zhang Qian, Hou Yubin, Shen Mo, Liu Jiang, Wang Pu. 1993 nm Nanosecond Pulse Generation from Tm-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Saturable Absorber[J]. Chinese Journal of Lasers, 2017, 44(8): 0801006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!