Photonics Research, 2017, 5 (6): 06000669, Published Online: Dec. 7, 2017  

Frequency-domain parametric downconversion for efficient broadened idler generation Download: 515次

Author Affiliations
International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Copy Citation Text

Ying Li, Yuhai Liang, Dahua Dai, Jianlong Yang, Haizhe Zhong, Dianyuan Fan. Frequency-domain parametric downconversion for efficient broadened idler generation[J]. Photonics Research, 2017, 5(6): 06000669.

References

[1] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science, 2012, 336: 1287-1291.

[2] J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška. High-brightness table-top hard x-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photonics, 2014, 8: 927-930.

[3] G. B. Zhang, N. A. M. Hafz, Y. Y. Ma, L. J. Qian, F. Q. Shao, Z. M. Sheng. Laser wakefield acceleration using mid-infrared laser pulses. Chin. Phys. Lett., 2016, 33: 095202.

[4] E. Esarey, C. B. Schroeder, W. P. Leemans. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 2009, 81: 1229-1285.

[5] C. Calabrese, A. M. Stingel, L. Shen, P. B. Petersen. Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution. Opt. Lett., 2012, 37: 2265-2267.

[6] A. Hugi, G. Villares, S. Blaser, H. C. Liu, J. Faist. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492: 229-233.

[7] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 2016, 41: 56-59.

[8] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5  μm based on crystalline microresonators. Nat. Commun., 2013, 4: 1345.

[9] V. Shumakova, P. Malevich, S. Alisauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuska, A. Pugzlys. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat. Commun., 2016, 7: 12877.

[10] G. Andriukaitis, T. Balciunas, S. Alisauskas, A. Pugzlys, A. Baltuska, T. Popmintchev, M.-C. Chen, M. M. Murnane, H. C. Kapteyn. 90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett., 2011, 36: 2755-2757.

[11] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, J. Biegert. High-power sub-two-cycle mid-infrared pulses at 100  MHz repetition rate. Nat. Photonics, 2015, 9: 721-724.

[12] S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hansch, N. Picque, M. Ebrahim-Zadeh. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser. Laser Photon. Rev., 2014, 8: L86-L91.

[13] A. Thai, M. Hemmer, P. K. Bates, O. Chalus, J. Biegert. Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate. Opt. Lett., 2011, 36: 3918-3920.

[14] G. Ernotte, P. Lassonde, F. Legare, B. E. Schmidt. Frequency domain tailoring for intra-pulse frequency mixing. Opt. Express, 2016, 24: 24225-24231.

[15] K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, J. Hou. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt. Lett., 2016, 41: 946-949.

[16] C. H. Lu, Y. J. Tsou, H. Y. Chen, B. H. Chen, Y. C. Cheng, S. D. Yang, M. C. Chen, C. C. Hsu, A. H. Kung. Generation of intense supercontinuum in condensed media. Optica, 2014, 1: 400-406.

[17] W. Yang, B. Zhang, G. Xue, K. Yin, J. Hou. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Opt. Lett., 2014, 39: 1849-1852.

[18] A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, A. M. Zheltikov. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica, 2016, 3: 299-302.

[19] B. Shim, S. E. Schrauth, A. L. Gaeta. Filamentation in air with ultrashort mid-infrared pulses. Opt. Express, 2011, 19: 9118-9126.

[20] S. Hadrich, H. Carstens, J. Rothhardt, J. Limpert, A. Tunnermann. Multi-gigawatt ultrashort pulses at high repetition rate and average power from two-stage nonlinear compression. Opt. Express, 2011, 19: 7546-7552.

[21] V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, B. E. Schmidt. 0.42 TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression. Appl. Phys. Lett., 2015, 107: 181101.

[22] Y. Li, H. Zhong, J. Yang, S. Wang, D. Fan. Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration. Opt. Lett., 2017, 42: 2806-2809.

[23] G. Cerullo, S. D. Silvestri. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum., 2003, 74: 1-18.

[24] B. W. Mayer, C. R. Phillips, L. Gallmann, U. Keller. Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA. Opt. Express, 2014, 22: 20798-20808.

[25] C. R. Phillips, B. W. Mayer, L. Gallmann, U. Keller. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media. Opt. Express, 2016, 24: 15940-15953.

[26] B. E. Schmidt, N. Thire, M. Boivin, A. Laramee, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Légaré. Frequency domain optical parametric amplification. Nat. Commun., 2014, 5: 3643.

[27] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. D. Silvestri, G. Cerullo. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J. Opt., 2010, 12: 013001.

[28] N. Demirdoven, M. Khalil, O. Golonzka, A. Tokmakoff. Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses. Opt. Lett., 2002, 27: 433-435.

[29] H. Zhong, L. Zhang, Y. Li, D. Fan. Group velocity mismatch-absent nonlinear frequency conversions for mid-infrared femtosecond pulses generation. Sci. Rep., 2015, 5: 10887.

[30] O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, B. K. Rhee. Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching. Appl. Phys. B, 2008, 92: 535-541.

[31] Q. Zhang, E. J. Takahashi, O. D. Mucke, P. Lu, K. Midorikawa. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Express, 2011, 19: 7190-7212.

[32] Y. Fu, E. J. Takahashi, Q. Zhang, P. Lu, K. Midorikawa. Optimization and characterization of dual-chirped optical parametric amplification. J. Opt., 2015, 17: 124001.

[33] Y. Fu, E. J. Takahashi, K. Midorikawa. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Opt. Lett., 2015, 40: 5082-5085.

[34] O. E. Martinez. Grating and prism compressors in the case of finite beam size. J. Opt. Soc. Am. B, 1986, 3: 929-934.

[35] K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian. Generation of 120  GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt. Lett., 2013, 38: 2159-2161.

[36] X. P. Hu, P. Xu, S. N. Zhu. Engineered quasi-phase-matching for laser techniques [Invited]. Photon. Res., 2013, 1: 171-185.

[37] O. Gayer, Z. Sacks, E. Galun, A. Arie. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B, 2008, 91: 343-348.

[38] J. Moses, S. W. Huang. Conformal profile theory for performance scaling of ultrabroadband optical parametric chirped pulse amplification. J. Opt. Soc. Am. B, 2011, 28: 812-831.

[39] A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett., 1999, 82: 3883-3886.

[40] S. A. Rezvani, Q. Zhang, Z. Hong, P. Lu. Tunable broadband intense IR pulse generation at non-degenerate wavelengths using group delay compensation in a dual-crystal OPA scheme. Opt. Express, 2016, 24: 11187-11198.

[41] C. Wang, Y. Leng, B. Zhao, Z. Zhang, Z. Xu. Extremely broad gain spectra of two-beam-pumped optical parametric chirped-pulse amplifier. Opt. Commun., 2004, 237: 169-177.

[42] H. Ishizuki, T. Taira. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3. Opt. Express, 2012, 20: 20002-20010.

[43] G. Cerullo, A. Baltuska, O. D. Mucke, C. Vozzi. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photon. Rev., 2011, 5: 323-351.

[44] A. Sell, A. Leitenstorfer, R. Huber. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100  MV/cm. Opt. Lett., 2008, 33: 2767-2769.

[45] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett., 2006, 89: 141119.

[46] F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, R. Huber. Single-cycle multiterahertz transients with peak fields above 10  MV/cm. Opt. Lett., 2010, 35: 2645-2647.

Ying Li, Yuhai Liang, Dahua Dai, Jianlong Yang, Haizhe Zhong, Dianyuan Fan. Frequency-domain parametric downconversion for efficient broadened idler generation[J]. Photonics Research, 2017, 5(6): 06000669.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!