激光与光电子学进展, 2021, 58 (3): 0306003, 网络出版: 2021-03-12   

雷达线性调频信号产生与去啁啾方法研究 下载: 916次

Generation and Dechirping of Linear Frequency Modulation Signals
作者单位
内蒙古大学电子信息工程学院,内蒙古 呼和浩特 010021
引用该论文

李昊, 魏永峰, 季玉双, 李想. 雷达线性调频信号产生与去啁啾方法研究[J]. 激光与光电子学进展, 2021, 58(3): 0306003.

Li Hao, Wei Yongfeng, Ji Yushuang, Li Xiang. Generation and Dechirping of Linear Frequency Modulation Signals[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0306003.

参考文献

[1] 邹金芳. 线性调频信号光学产生及脉冲压缩技术研究[D]. 成都: 电子科技大学, 2017.

    Zou J F. The reasearch of photonic generation and pulse compression for linear frequency modulation signal[D]. Chengdu: University of Electronic Science and Technology of China, 2017.

[2] 范欢欢, 伍小保, 孙维佳. 可重构非线性调频信号的设计与实现[J]. 信息通信, 2019, 32(9): 22-24.

    Fan H H, Wu X B, Sun W J. Design and implementation of reconfigurable NLFM signal[J]. Information & Communications, 2019, 32(9): 22-24.

[3] Li W Z, Kong F Q, Yao J P. Phase-coded microwave waveform generation based on a tunable optoelectronic oscillator[C]∥2013 IEEE International Topical Meeting on Microwave Photonics (MWP), October28-31, 2013, Alexandria, VA, USA. New York: IEEE Press, 2013: 76-79.

[4] 葛翼诗. 线性调频脉冲压缩技术在雷达系统中的应用分析[J]. 科技与创新, 2019(10): 154-155.

    Ge Y S. The application analysis of LFM pulse compression technology in radar system[J]. Science and Technology & Innovation, 2019(10): 154-155.

[5] Wang S W, Lu Z J, Idrees N, et al. Experimental generation and de-chirping of photonic THz linearly chirped signals with large time-bandwidth product[C]∥2019 International Topical Meeting on Microwave Photonics (MWP), October7-10, 2019, Ottawa, ON, Canada. New York: IEEE Press, 2019: 1-3.

[6] McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper[J]. Optics Letters, 2002, 27(15): 1345-1347.

[7] 叶荣, 阴明, 吴显云, 等. 光谱角色散OPCPA中啁啾脉冲频谱整形的理论研究[J]. 激光与光电子学进展, 2018, 55(4): 041901.

    Ye R, Yin M, Wu X Y, et al. Theoretical study of spectrum shaping of chirped pulse in OPCPA with angular spectral dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041901.

[8] 徐宇啸. 微波光子宽带雷达信号产生及接收中关键技术研究[D]. 杭州: 浙江大学, 2017.

    Xu Y X. Study on key technologies of microwave photonic signal generation and receiving for wideband radars[D]. Hangzhou: Zhejiang University, 2017.

[9] Ghelfi P, Scotti F, Laghezza F, et al. Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars[J]. Journal of Lightwave Technology, 2012, 30(11): 1638-1644.

[10] Li W Z, Kong F Q, Yao J P. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2013, 31(23): 3780-3786.

[11] Li W Z, Yao J P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. Journal of Lightwave Technology, 2014, 32(20): 3573-3579.

[12] 张敬, 王目光, 邵晨光, 等. 基于双平行马赫-曾德尔调制器的光子倍频毫米波生成的研究[J]. 光学学报, 2014, 34(3): 0306004.

    Zhang J, Wang M G, Shao C G, et al. Photonic frequency-multiplying millimeter-wave generation based on dual-parallel Mach-Zehnder modulator[J]. Acta Optica Sinica, 2014, 34(3): 0306004.

[13] Zhou P, Zhang F, Guo Q, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460-18467.

[14] Guo Q S, Zhang F Z, Zhou P, et al. Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1320-1323.

[15] Guo Q S, Zhang F Z, Wang Z Q, et al. High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar[C]∥2017 International Topical Meeting on Microwave Photonics (MWP), October23-26, 2017, Beijing, China. New York: IEEE, 2017: 1-3.

[16] 韩成哲, 丛雯珊, 刘冉冉, 等. 基于并联MZM的载频8倍频线性调频信号光产生方法[J]. 光学与光电技术, 2019, 17(3): 95-100.

    Han C Z, Cong W S, Liu R R, et al. Photonic approach for generating linear frequency modulation signal with carrier frequency multiplication factor of 8 based on parallel MZMs[J]. Optics & Optoelectronic Technology, 2019, 17(3): 95-100.

[17] Chen V C, Martorella M. Inverse synthetic aperture radar imaging: principles, algorithms and applications[M]. New York: SciTech Publishing Inc., 2014.

[18] 王小婵. 基于微波光子学的高频率、大时间-带宽积线性啁啾信号产生技术研究[D]. 北京: 北京邮电大学, 2019.

    Wang X C. Reaearch on generation technology of linear chirp signal with high frequency and large time-bandwidth product based on microwave photonics[D]. Beijing: Beijing University of Posts and Telecom, 2019.

[19] l.: s.n.], 2019: 313-316.

    Morozov O G, Morozov G A, Faskhutdinov L M, et al. Synthesis of dual cross LFM signals based on technologies of microwave photonics[C]∥2019 Russian Open Conference on Radio Wave Propagation (RWP), Kazan, Russia. [S.

[20] 薛壮壮, 裴丽, 解宇恒, 等. 无滤波24倍频光载毫米波发生器[J]. 光学学报, 2020, 40(10): 1006001.

    Xue Z Z, Pei L, Xie Y H, et al. Filterless 24-tupling frequency millimeter-wave generator[J]. Acta Optica Sinica, 2020, 40(10): 1006001.

[21] 刘燕平, 王冲, 夏海云. 时频分析在激光雷达中的应用进展[J]. 激光与光电子学进展, 2018, 55(12): 120005.

    Liu Y P, Wang C, Xia H Y. Application progress of time-frequency analysis for lidar[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120005.

李昊, 魏永峰, 季玉双, 李想. 雷达线性调频信号产生与去啁啾方法研究[J]. 激光与光电子学进展, 2021, 58(3): 0306003. Li Hao, Wei Yongfeng, Ji Yushuang, Li Xiang. Generation and Dechirping of Linear Frequency Modulation Signals[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0306003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!