中国激光, 2019, 46 (9): 0901007, 网络出版: 2019-09-10   

超短脉冲激光与固体靶作用产生光核中子的数值模拟研究 下载: 954次

Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions
作者单位
中国工程物理研究院激光聚变研究中心等离子体物理重点实验室, 四川 绵阳 621900
引用该论文

齐伟, 贺书凯, 闫永宏, 周维民, 谷渝秋. 超短脉冲激光与固体靶作用产生光核中子的数值模拟研究[J]. 中国激光, 2019, 46(9): 0901007.

Qi Wei, He Shukai, Yan Yonghong, Zhou Weimin, Gu Yuqiu. Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions[J]. Chinese Journal of Lasers, 2019, 46(9): 0901007.

参考文献

[1] Park H S, Hurricane O, Callahan D, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility[J]. Physical Review Letters, 2014, 112(5): 055001.

[2] Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 2013, 110(4): 044802.

[3] Jiao X J, Shaw J M, Wang T, et al. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6): 296-302.

[4] Pomerantz I. McCary E, Meadows A R, et al. Laser generation of ultra-short neutron bursts from high atomic number converters[J]. Proceedings of SPIE, 2015, 9514: 95140Q.

[5] Arikawa Y, Utsugi M, Alessio M, et al. High-intensity neutron generation via laser-driven photonuclear reaction[J]. Plasma and Fusion Research, 2015, 10: 2404003.

[6] Pomerantz I. McCary E, Meadows A, et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 2014, 113(18): 184801.

[7] 来定国, 张永民, 李进玺, 等. 强流电子束轫致辐射复合薄靶设计[J]. 强激光与粒子束, 2013, 25(6): 1396-1400.

    Lai D G, Zhang Y M, Li J X, et al. Design of bremsstrahlung composite thin converter for high current electron beams[J]. High Power Laser and Particle Beams, 2013, 25(6): 1396-1400.

[8] 杨晓虎. 超强激光与等离子体相互作用中超热电子的产生和输运研究[D]. 长沙: 国防科学技术大学, 2012: 38- 39.

    Yang XH. Study of generation and propagation of fast electrons in ultraintense laser pulse interaction with plasmas[D]. Changsha: National University of Defense Technology, 2012: 38- 39.

[9] 郭冰琪, 李泉凤, 杜泰斌, 等. 轫致辐射靶的发射率及角分布分析[J]. 高能物理与核物理, 2005, 29(12): 1190-1195.

    Guo B Q, Li Q F, Du T B, et al. Analysis of angular distribution and photon yield from bremsstrahlung targets[J]. High Energy Physics and Nuclear Physics, 2005, 29(12): 1190-1195.

[10] 王光磊, 姚海凤, 张彤, 等. 激光尾场电子加速器驱动的全光学FEL物理模拟研究[J]. 中国激光, 2014, 41(9): 0902005.

    Wang G L, Yao H F, Zhang T, et al. Simulation study of all optical-FEL based on the laser wakefield accelerator[J]. Chinese Journal of Lasers, 2014, 41(9): 0902005.

[11] Umstadter D. Laser light splits atom[J]. Nature, 2000, 404(6775): 239.

[12] Ledingham K W D, Norreys P A. Nuclear physics merely using a light source[J]. Contemporary Physics, 1999, 40(6): 367-383.

[13] Blatt JM. Theoretical nuclear physics[M]. New York: Courier Dover Publications, 1991.

[14] Boyer K, Luk T S, Rhodes C K. Possibility of optically induced nuclear fission[J]. Physical Review Letters, 1988, 60(7): 557-560.

[15] Berman B L, Fultz S C. Measurements of the giant dipole resonance with monoenergetic photons[J]. Reviews of Modern Physics, 1975, 47(3): 713-761.

[16] Reed S A, Chvykov V, Kalintchenko G, et al. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields[J]. Applied Physics Letters, 2006, 89(23): 231107.

[17] Yan Y H, Wu Y C, Zhao Z Q, et al. Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions[J]. Physics of Plasmas, 2012, 19(2): 023114.

[18] Chen L M, Zhang J, Li Y T, et al. Effects of laser polarization on jet emission of fast electrons in femtosecond-laser plasmas[J]. Physical Review Letters, 2001, 87(22): 225001.

[19] Tatarakis M, Davies J R, Lee P, et al. Plasma formation on the front and rear of plastic targets due to high-intensity laser-generated fast electrons[J]. Physical Review Letters, 1998, 81(5): 999-1002.

[20] Tanimoto T, Habara H, Kodama R, et al. Measurements of fast electron scaling generated by petawatt laser systems[J]. Physics of Plasmas, 2009, 16(6): 062703.

[21] Chen H, Wilks S C, Kruer W L, et al. Hot electron energy distributions from ultraintense laser solid interactions[J]. Physics of Plasmas, 2009, 16(2): 020705.

[22] Phillips T W, Cable M D, Cowan T E, et al. Diagnosing hot electron production by short pulse, high intensity lasers using photonuclear reactions[J]. Review of Scientific Instruments, 1999, 70(1): 1213-1216.

[23] Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386.

[24] Compant la Fontaine A. Photon dose produced by a high-intensity laser on a solid target[J]. Journal of Physics D: Applied Physics, 2014, 47(32): 325201.

[25] 中国核数据中心. 核物理主题数据库[OL].[2019-02-16]. http:∥www.nuclear.csdb.cn/pingjia.html.

    China Nuclear Data Center. The database of nuclear physics[OL].[2019-02-16]. http:∥www.nuclear.csdb.cn/pingjia.html.

[26] Qi W, Zhang X H, Zhang B, et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets[J]. Physics of Plasmas, 2019, 26(4): 043103.

齐伟, 贺书凯, 闫永宏, 周维民, 谷渝秋. 超短脉冲激光与固体靶作用产生光核中子的数值模拟研究[J]. 中国激光, 2019, 46(9): 0901007. Qi Wei, He Shukai, Yan Yonghong, Zhou Weimin, Gu Yuqiu. Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions[J]. Chinese Journal of Lasers, 2019, 46(9): 0901007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!