激光与光电子学进展, 2019, 56 (6): 061301, 网络出版: 2019-07-30   

基于时域有限差分法的石墨烯纳米带阵列多频滤波特性研究 下载: 1010次

Multi-Frequency Filtering Characteristics of Graphene-Nanoribbon Arrays Based on Finite Difference Time Domain Method
作者单位
昆明理工大学理学院, 云南 昆明 650500
引用该论文

阳胜, 曾春平, 肖驰, 周亚乔, 王昊, 马琨. 基于时域有限差分法的石墨烯纳米带阵列多频滤波特性研究[J]. 激光与光电子学进展, 2019, 56(6): 061301.

Sheng Yang, Chunping Zeng, Chi Xiao, Yaqiao Zhou, Hao Wang, Kun Ma. Multi-Frequency Filtering Characteristics of Graphene-Nanoribbon Arrays Based on Finite Difference Time Domain Method[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061301.

参考文献

[1] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

[3] Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

[4] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

[5] Gosciniak J. Tan D T H. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators[J]. Nanotechnology, 2013, 24(18): 185202.

[6] 刘伟光, 胡滨, 李彪, 等. 基于石墨烯-金属复合结构的光学调制器研究进展[J]. 激光与光电子学进展, 2016, 53(3): 030005.

    Liu W G, Hu B, Li B, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.

[7] Chu H S, How Gan C. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J]. Applied Physics Letters, 2013, 102(23): 231107.

[8] 毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

    Bi W H, Li C L, Wang X Y, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

[9] Liu J F, Wright A R, Zhang C, et al. Strong terahertz conductance of graphene nanoribbons under a magnetic field[J]. Applied Physics Letters, 2008, 93(4): 041106.

[10] Zhang Y B, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820-823.

[11] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 2010, 105(25): 256805.

[12] 刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

[13] 邱平平, 邱伟彬, 林志立, 等. 复式晶格二维石墨烯等离子激元晶体的能带结构与态密度[J]. 激光与光电子学进展, 2017, 54(5): 052401.

    Qiu P P, Qiu W B, Lin Z L, et al. Energy-band structure and density of states of composite lattice two-dimensional graphene plasmon polariton crystals[J]. Laser & Optoelectronics Progress, 2017, 54(5): 052401.

[14] Thongrattanasiri S. ManjavacasA, García de Abajo F J. Quantum finite-size effects in graphene plasmons[J]. ACS Nano, 2012, 6(2): 1766-1775.

[15] Bao Q L, Zhang H, Yang J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.

[16] Chen S S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated cu and Cu/Ni alloy[J]. ACS Nano, 2011, 5(2): 1321-1327.

[17] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[18] Cai Y J, Zhu J F, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers[J]. Applied Physics Letters, 2015, 106(4): 043105.

[19] Xu J L, Li X L, Wu Y Z, et al. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Optics Letters, 2011, 36(10): 1948-1950.

[20] Falkovsky L A. Optical properties of graphene[J]. Journal of Physics: Conference Series, 2008, 115(129): 012004.

[21] Xu B, Martinez A, Set S Y, et al. Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(2): 180-182.

阳胜, 曾春平, 肖驰, 周亚乔, 王昊, 马琨. 基于时域有限差分法的石墨烯纳米带阵列多频滤波特性研究[J]. 激光与光电子学进展, 2019, 56(6): 061301. Sheng Yang, Chunping Zeng, Chi Xiao, Yaqiao Zhou, Hao Wang, Kun Ma. Multi-Frequency Filtering Characteristics of Graphene-Nanoribbon Arrays Based on Finite Difference Time Domain Method[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061301.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!