激光与光电子学进展, 2021, 58 (8): 0810022, 网络出版: 2021-04-12   

少样本条件下基于生成对抗网络的遥感图像数据增强 下载: 857次

Data Augmentation for Remote Sensing Image Based on Generative Adversarial Networks Under Condition of Few Samples
作者单位
国防科技大学电子对抗学院脉冲功率激光技术国家重点实验室, 安徽 合肥 230009
引用该论文

姜雨辰, 朱斌. 少样本条件下基于生成对抗网络的遥感图像数据增强[J]. 激光与光电子学进展, 2021, 58(8): 0810022.

Yuchen Jiang, Bin Zhu. Data Augmentation for Remote Sensing Image Based on Generative Adversarial Networks Under Condition of Few Samples[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810022.

参考文献

[1] Bjerrum EJ. SMILES enumeration as data augmentation for neural network modeling of molecules[EB/OL]. (2017-05-17)[2020-07-30]. https:∥www.researchgate.net/publication/315495821_SMILES_Enumeration_as_Data_Augmentation_for_Neural_Network_Modeling_of_Molecules.

[2] Zhong Z, Zheng L, Kang G L, et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 13001-13008.

[3] Lemley J, Bazrafkan S, Corcoran P, et al. Smart augmentation learning an optimal data augmentation strategy[J]. IEEE Access, 2017, 5: 5858-5869.

[4] DinhL, KruegerD, BengioY, et al. NICE: non-linear independent components estimation[EB/OL]. (2014-10-30)[2015-04-10]. http://arxiv.org/abs/1410.8516?context=cs.LG.html.

[5] 张祥东, 王腾军, 杨耘, 等. 基于多尺度残差网络的小样本高光谱图像分类[J]. 激光与光电子学进展, 2020, 57(16): 162801.

    Zhang X D, Wang T J, Yang Y, et al. Classification of small-sized sample hyperspectral images based on multi-scale residual network[J]. Laser & Optoelectronics Progress, 2020, 57(16): 162801.

[6] 晋玮佩, 郭继昌, 祁清, 等. 基于条件生成对抗网络的水下图像增强[J]. 激光与光电子学进展, 2020, 57(14): 141002.

    Jin W P, Guo J C, Qi Q, et al. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141002.

[7] 贺琪, 李瑶, 宋巍, 等. 小样本的多模态遥感影像高层特征融合分类[J]. 激光与光电子学进展, 2019, 56(11): 111001.

    He Q, Li Y, Song W, et al. Multimodal remote sensing image classification with small sample size based on high-level feature fusion[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111001.

[8] Cubuk ED, ZophB, ManéD, et al.AutoAugment: learning augmentation strategies from data[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE Press, 2019: 113- 123.

[9] TerranceD, Graham WT. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-08-15)[2017-11-29]. http:// arxiv.org/abs/1708.04552?context=cs.LG.html.

[10] ChenP, LiuS, ZhaoH, et al. GridMask data augmentation[EB/OL]. (2020-01-13)[2020-01-14]. http:// arxiv.org/abs/2001.04086?context=cs.LG.html.

[11] ZhangH, CisseM, Dauphin YN, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25)[2018-04-27]. http:∥arxiv.org/abs/1710.09412?context=cs.LG.html.

[12] HendrycksD, MuN, Cubuk ED, et al. AugMix: a simple data processing method to improve robustness and uncertainty[EB/OL]. (2019-11-05)[2020-02-17]http:// arxiv.org/abs/1912.02781?context=cs. LG.html

[13] Kingma DP, WellingM. Auto-encoding variational Bayes[EB/OL]. (2013-11-20)[2014-05-01]. http://arxiv.org/abs/1312.6114?context=cs. LG.html.

[14] GoodfellowI, PougetJ, MirzaM, et al. Generative adversarial nets[C] //Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Quebec, Canada. New York: ACM, 2014: 2672- 2680.

[15] KarrasT, LaineS, AittalaM, et al. Analyzing and improving the image quality of StyleGAN[EB/OL]. (2019-11-03)[2020-03-23]. http:// arxiv.org/abs/1912.04958?context=cs.LG.html.

[16] RedmonJ, FarhadiA. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2020-03-23]. http:// arxiv.org/abs/1804.02767?context=cs.LG.html.

[17] RonnebergerO, FischerP, BroxT, et al. U-net: convolutional networks for biomedical image segmentation[EB/OL]. (2015-05-18)[2020-03-23]. https:∥arxiv.org/abs/1505.04597.

[18] RadfordA, MetzL, ChintalaS, et al. Unsupervised representation learning with deep convoluti-onal generative adversarial networks[EB/OL]. (2015-11-19)[2016-01-07]. http://arxiv.org/abs/1511.06434?context=cs.LG.htm.

[19] ArjovskyM, ChintalaS, BottouL. Wasserstein gan[EB/OL]. (2017-01-26)[ 2017-11-06]. http:∥arxiv.org/abs/1701.07875?context=cs.LG.html.

[20] KarrasT, LaineS, AilaT, et al. A style-based generator architecture for generative adversarial networks[EB/OL]. (2018-11-12)[2019-03-29]. http:// arxiv.org/abs/1812.04948?context=cs.LG.html.

[21] ZhaoS, LiuZ, LinJ, et al. Differentiable augmentation for data-efficient gan training[EB/OL]. (2020-06-18)[2020-03-23]. http://arxiv.org/abs2006.10738?context=cs.LG.html.

[22] Ojala T, Pietikainen M, Maenpaa T, et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(7): 971-987.

[23] LiK, WanG, ChengG, et al. Object detection in optical remote sensing images: a survey and a new benchmark[EB/OL]. (2019-08-31)[2019-09-22]. http://arxiv.org/abs/1909.00133?context=cs.LG.html.

[24] Liu YY, Zhang JM, Wang KP, et al. Fast underwater target recognition method based on unbalanced datasets[EB/OL]. (2019-07-19) [2019-07-30]. http://kns.cnki.net/kcms/ detail/11.2127.TP.20190719.1443.018.html.

[25] Long Y, Gong Y P, Xiao Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.

姜雨辰, 朱斌. 少样本条件下基于生成对抗网络的遥感图像数据增强[J]. 激光与光电子学进展, 2021, 58(8): 0810022. Yuchen Jiang, Bin Zhu. Data Augmentation for Remote Sensing Image Based on Generative Adversarial Networks Under Condition of Few Samples[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810022.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!