中国激光, 2018, 45 (8): 0801007, 网络出版: 2018-08-11   

非线性放大环形镜被动锁模光纤激光器重复频率精确锁定研究 下载: 1248次

Repetition Rate Precision Lock of Nonlinear Amplifying Loop Mirror Passively Mode-Locked Fiber Laser
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
引用该论文

杨松, 郝强, 曾和平. 非线性放大环形镜被动锁模光纤激光器重复频率精确锁定研究[J]. 中国激光, 2018, 45(8): 0801007.

Yang Song, Hao Qiang, Zeng Heping. Repetition Rate Precision Lock of Nonlinear Amplifying Loop Mirror Passively Mode-Locked Fiber Laser[J]. Chinese Journal of Lasers, 2018, 45(8): 0801007.

参考文献

[1] Nicola C, Marco C, Brandon R. et al. The optical frequency comb fiber spectrometer[J]. Nature Communications, 2016, 7: 12995.

    Nicola C, Marco C, Brandon R. et al. The optical frequency comb fiber spectrometer[J]. Nature Communications, 2016, 7: 12995.

[2] Jiang Y Y, Ludlow A D, Lemke N D. et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

    Jiang Y Y, Ludlow A D, Lemke N D. et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

[3] Predehl K, Grosche G, Raupach S M. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-443.

    Predehl K, Grosche G, Raupach S M. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-443.

[4] Steinmetz T, Wilken T, Araujo-Hauck C. et al. Laser fequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

    Steinmetz T, Wilken T, Araujo-Hauck C. et al. Laser fequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[5] Holzwarth R, Udem T, Hansch T W. et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 2000, 85(11): 2264-2267.

    Holzwarth R, Udem T, Hansch T W. et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 2000, 85(11): 2264-2267.

[6] Yang L, Nie J, Duan L. Dynamic optical sampling by cavity tuning and its application in lidar[J]. Optics Express, 2013, 21(3): 3850-3860.

    Yang L, Nie J, Duan L. Dynamic optical sampling by cavity tuning and its application in lidar[J]. Optics Express, 2013, 21(3): 3850-3860.

[7] 何广龙, 徐莉, 马晓辉, 等. 透/反复合双饱和吸收体被动锁模光纤激光器[J]. 激光与光电子学进展, 2017, 54(11): 111405.

    何广龙, 徐莉, 马晓辉, 等. 透/反复合双饱和吸收体被动锁模光纤激光器[J]. 激光与光电子学进展, 2017, 54(11): 111405.

    He G L, Xu L, Ma X H, et al. Passively mode-locked fiber laser based on transmission/reflection composite double saturable absorber[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111405.

    He G L, Xu L, Ma X H, et al. Passively mode-locked fiber laser based on transmission/reflection composite double saturable absorber[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111405.

[8] Saraceno C J, Schriber C, Mangold M. et al. SESAMs for high-power oscillators: design guidelines and damage thresholds[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 29-41.

    Saraceno C J, Schriber C, Mangold M. et al. SESAMs for high-power oscillators: design guidelines and damage thresholds[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 29-41.

[9] Szczepanek J, Kardas T M, Radzewicz C. et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578.

    Szczepanek J, Kardas T M, Radzewicz C. et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578.

[10] Nielsen C K, Keiding S R. All-fiber mode-locked fiber laser[J]. Optics Letters, 2007, 32(11): 1474-1476.

    Nielsen C K, Keiding S R. All-fiber mode-locked fiber laser[J]. Optics Letters, 2007, 32(11): 1474-1476.

[11] 马海全, 刘畅, 赵卫, 等. 8字形腔锁模掺Yb 3+光纤激光器 [J]. 中国激光, 2005, 32(9): 1173-1177.

    马海全, 刘畅, 赵卫, 等. 8字形腔锁模掺Yb 3+光纤激光器 [J]. 中国激光, 2005, 32(9): 1173-1177.

    Ma H Q, Liu C, Zhao W, et al. Figure-of-eight cavity Yb 3+-doped fiber mode-locked lasers [J]. Chinese Journal of Lasers, 2005, 32(9): 1173-1177.

    Ma H Q, Liu C, Zhao W, et al. Figure-of-eight cavity Yb 3+-doped fiber mode-locked lasers [J]. Chinese Journal of Lasers, 2005, 32(9): 1173-1177.

[12] Avdokhin A, Popov S, Taylor J. Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm[J]. Optics Express, 2003, 11(3): 265-269.

    Avdokhin A, Popov S, Taylor J. Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm[J]. Optics Express, 2003, 11(3): 265-269.

[13] Aguergaray C, Broderick N G, Erkintalo M. et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

    Aguergaray C, Broderick N G, Erkintalo M. et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

[14] Yariv A. Operator algebra for propagation problems involving phase conjugation and nonreciprocal elements[J]. Applied Optics, 1987, 26(21): 4538-4540.

    Yariv A. Operator algebra for propagation problems involving phase conjugation and nonreciprocal elements[J]. Applied Optics, 1987, 26(21): 4538-4540.

[15] Jiang T, Cui Y, Lu P. et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1786-1789.

    Jiang T, Cui Y, Lu P. et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1786-1789.

[16] 邹峰, 杨学宗, 潘伟巍, 等. 1015~1080 nm可调谐保偏光纤耗散孤子锁模激光器[J]. 中国激光, 2017, 44(9): 0901005.

    邹峰, 杨学宗, 潘伟巍, 等. 1015~1080 nm可调谐保偏光纤耗散孤子锁模激光器[J]. 中国激光, 2017, 44(9): 0901005.

    Zou F, Yang X Z, Pan W W, et al. 1015-1080 nm tunable polarization-maintaining dissipative soliton mode-locked fiber laser[J]. Chinese Journal of Lasers, 2017, 44(9): 0901005.

    Zou F, Yang X Z, Pan W W, et al. 1015-1080 nm tunable polarization-maintaining dissipative soliton mode-locked fiber laser[J]. Chinese Journal of Lasers, 2017, 44(9): 0901005.

[17] Guo Z, Hao Q, Yang S. et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system[J]. IEEE Photonics Journal, 2017, 9(1): 1-7.

    Guo Z, Hao Q, Yang S. et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system[J]. IEEE Photonics Journal, 2017, 9(1): 1-7.

[18] Li Y, Kuse N, Rolland A. et al. Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb[J]. Optics Express, 2017, 25(15): 18017-18023.

    Li Y, Kuse N, Rolland A. et al. Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb[J]. Optics Express, 2017, 25(15): 18017-18023.

[19] Tai H Y, Park S T, Kim E B. et al. Orthogonal control of femtosecond mode-locked laser having zero carrier-offset frequency with three-axis PZT[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4): 1025-1029.

    Tai H Y, Park S T, Kim E B. et al. Orthogonal control of femtosecond mode-locked laser having zero carrier-offset frequency with three-axis PZT[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4): 1025-1029.

[20] 吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

    吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

    Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.

    Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.

[21] Shen X, He B, Zhao J. et al. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity[J]. Applied Physics Letters, 2015, 106(3): 1511-1513.

    Shen X, He B, Zhao J. et al. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity[J]. Applied Physics Letters, 2015, 106(3): 1511-1513.

[22] Rieger S, Hellwig T, Walbaum T. et al. Optical repetition rate stabilization of a mode-locked all-fiber laser[J]. Optics Express, 2013, 21(4): 4889-4895.

    Rieger S, Hellwig T, Walbaum T. et al. Optical repetition rate stabilization of a mode-locked all-fiber laser[J]. Optics Express, 2013, 21(4): 4889-4895.

[23] 罗浆, 杨松, 郝强, 等. SESAM锁模全保偏光纤激光器重复频率的精确锁定[J]. 光学学报, 2017, 37(2): 0206003.

    罗浆, 杨松, 郝强, 等. SESAM锁模全保偏光纤激光器重复频率的精确锁定[J]. 光学学报, 2017, 37(2): 0206003.

    Luo J, Yang S, Hao Q, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 2017, 37(2): 0206003.

    Luo J, Yang S, Hao Q, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 2017, 37(2): 0206003.

[24] Hao Q, Zhang Q, Chen F. et al. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror[J]. Journal of Lightwave Technology, 2016, 34(11): 2833-2837.

    Hao Q, Zhang Q, Chen F. et al. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror[J]. Journal of Lightwave Technology, 2016, 34(11): 2833-2837.

[25] Bollond P G, Barry L P, Dudley J M. et al. Characterization of nonlinear switching in a figure-of-eight fiber laser using frequency-resolved optical gating[J]. IEEE Photonics Technology Letters, 1998, 10(3): 343-345.

    Bollond P G, Barry L P, Dudley J M. et al. Characterization of nonlinear switching in a figure-of-eight fiber laser using frequency-resolved optical gating[J]. IEEE Photonics Technology Letters, 1998, 10(3): 343-345.

[26] Kibler B, Fischer R, Lacourt P A. et al. Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fiber[J]. Electronics Letters, 2007, 43(17): 915-916.

    Kibler B, Fischer R, Lacourt P A. et al. Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fiber[J]. Electronics Letters, 2007, 43(17): 915-916.

[27] Scott R P, Langrock C, Kolner B H. High-dynamic-range laser amplitude and phase noise measurement techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 641-655.

    Scott R P, Langrock C, Kolner B H. High-dynamic-range laser amplitude and phase noise measurement techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 641-655.

[28] Newbury N R, Swann W C. Low-noise fiber-laser frequency combs (invited)[J]. Journal of the Optical Society of America B, 2007, 24(8): 1756-1770.

    Newbury N R, Swann W C. Low-noise fiber-laser frequency combs (invited)[J]. Journal of the Optical Society of America B, 2007, 24(8): 1756-1770.

杨松, 郝强, 曾和平. 非线性放大环形镜被动锁模光纤激光器重复频率精确锁定研究[J]. 中国激光, 2018, 45(8): 0801007. Yang Song, Hao Qiang, Zeng Heping. Repetition Rate Precision Lock of Nonlinear Amplifying Loop Mirror Passively Mode-Locked Fiber Laser[J]. Chinese Journal of Lasers, 2018, 45(8): 0801007.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!