激光与光电子学进展, 2019, 56 (17): 170617, 网络出版: 2019-09-05   

基于拉曼放大的长距离快速布里渊光时域反射仪 下载: 1018次

Fast and Long-Distance Brillouin Optical Time-Domain Reflectometry Based on Raman Amplification
作者单位
暨南大学光子技术研究院, 广东 广州 510632
引用该论文

马祥杰, 周黎明, 程凌浩, 刘伟民. 基于拉曼放大的长距离快速布里渊光时域反射仪[J]. 激光与光电子学进展, 2019, 56(17): 170617.

Xiangjie Ma, Liming Zhou, Linghao Cheng, Weimin Liu. Fast and Long-Distance Brillouin Optical Time-Domain Reflectometry Based on Raman Amplification[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170617.

参考文献

[1] AdachiS. Distributed optical fiber sensors and their applications[C]∥2008 SICE Annual Conference, August 20-22, 2008, Chofu, Japan. New York: IEEE, 2008: 329- 333.

[2] 饶云江. 长距离分布式光纤传感技术研究进展[J]. 物理学报, 2017, 66(7): 074207.

    Rao Y J. Recent progress in ultra-long distributed fiber-optic sensing[J]. Acta Physica Sinica, 2017, 66(7): 074207.

[3] Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber[J]. Optics Letters, 1993, 18(3): 185-187.

[4] 尚秋峰, 胡雨婷, 刘薇. 基于互相关卷积与高阶矩质心计算的布里渊散射谱特征提取[J]. 中国激光, 2017, 44(11): 1106011.

    Shang Q F, Hu Y T, Liu W. Feature extraction of Brillouin scattering spectrum based on cross-correlation convolution and high-order centroid calculation[J]. Chinese Journal of Lasers, 2017, 44(11): 1106011.

[5] Maughan S M, Kee H H, Newson T P. 57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection[J]. Optics Letters, 2001, 26(6): 331-333.

[6] 王健健, 李永倩. 布里渊光时域分析系统性能提高方法综述[J]. 激光与光电子学进展, 2018, 55(11): 110003.

    Wang J J, Li Y Q. Review of methods for improving performance of Brillouin optical time-domain analysis system[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110003.

[7] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

[8] Alahbabi M, Cho Y T, Newson T P. Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors[J]. Optics Letters, 2004, 29(1): 26-28.

[9] Alahbabi M N, Cho Y T, Newson T P, et al. Influence of modulation instability on distributed optical fiber sensors based on spontaneous Brillouin scattering[J]. Journal of the Optical Society of America B, 2004, 21(6): 1156-1160.

[10] Alahbabi M N, Cho Y T, Newson T P. 100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2004, 15(8): 1544-1547.

[11] Chang T Y, Koscica T E, Li D Y, et al. A novel detection method of Brillouin backscattered light in optical fiber[J]. IEEE Sensors Journal, 2009, 9(4): 430-434.

[12] 沈一春, 宋牟平, 章献民, 等. 长距离光纤布里渊散射研究[J]. 光子学报, 2004, 33(8): 931-934.

    Shen Y C, Song M P, Zhang X M, et al. Brillouin scattering in long optical fiber[J]. Acta Photonica Sinica, 2004, 33(8): 931-934.

[14] Tiwari U, Thyagarajan K, Shenoy M R. Simulation and experimental characterization of Raman/EDFA hybrid amplifier with enhanced performance[J]. Optics Communications, 2009, 282(8): 1563-1566.

[15] Cho YT, Newson TP. Brillouin-based distributed fibre temperature sensor at 1.53 μm using Raman amplification[C]∥2002 15th Optical Fiber Sensors Conference Technical Digest, May 10-10, 2002, Portland, OR, USA. New York: IEEE, 2002: 305- 308.

[16] Cho Y T, Alahbabi M, Gunning M J, et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 2003, 28(18): 1651-1653.

[17] Cho Y T, Alahbabi M N, Gunning M J, et al. Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification[J]. Measurement Science and Technology, 2004, 15(8): 1548-1552.

[18] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification[J]. Journal of the Optical Society of America B, 2005, 22(6): 1321-1324.

[19] LalamN, Ng WP, DaiX, et al. Sensing range improvement of Brillouin optical time domain reflectometry (BOTDR) using inline erbium-doped fibre amplifier[C]∥2017 IEEE SENSORS, October 29-November 1, 2017, Glasgow, UK. New York: IEEE, 2017: 8233878.

[20] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834-842.

[21] Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

[22] 梁浩. 基于序列编码探测脉冲的布里渊光纤传感器的研究[D]. 南京: 南京大学, 2011.

    LiangH. Research of Brillouin distributed optical fiber sensor based on coded pulses[D]. Nanjing: Nanjing University, 2011.

[23] KurashimaT, HoriguchiT, OhnoH, et al. Strain and temperature characteristics of Brillouin spectra in optical fibers for distributed sensing techniques[C]∥24th European Conference on Optical Communication, September 20-24, 1998, Madrid, Spain. New York: IEEE, 1998, 1: 149- 150.

[24] AgrawalG. Nonlinear fiber optics[M]. New York: Academic Press, 2005.

[25] 李威, 刘伟民, 周黎明, 等. 基于正交相干接收的布里渊斯托克斯与反斯托克斯散射光分离技术[J]. 中国激光, 2018, 45(7): 0706003.

    Li W, Liu W M, Zhou L M, et al. Separation of Brillouin stokes scattering and anti-stokes scattering based on orthogonal coherent receiving[J]. Chinese Journal of Lasers, 2018, 45(7): 0706003.

马祥杰, 周黎明, 程凌浩, 刘伟民. 基于拉曼放大的长距离快速布里渊光时域反射仪[J]. 激光与光电子学进展, 2019, 56(17): 170617. Xiangjie Ma, Liming Zhou, Linghao Cheng, Weimin Liu. Fast and Long-Distance Brillouin Optical Time-Domain Reflectometry Based on Raman Amplification[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170617.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!