量子光学学报, 2017, 23 (2): 99, 网络出版: 2017-07-05   

光通信波段低频压缩态光场的实验制备

Generation of a Low-frequency Squeezed States at Telecommunication Wavelength
作者单位
量子光学与光量子器件国家重点实验室,山西大学光电研究所,极端光学协同创新中心,山西大学, 山西 太原 030006
引用该论文

要立婷, 冯晋霞, 高英豪, 张宽收. 光通信波段低频压缩态光场的实验制备[J]. 量子光学学报, 2017, 23(2): 99.

YAO Li-ting, FENG Jin-xia, GAO Ying-hao, ZHANG Kuan-shou. Generation of a Low-frequency Squeezed States at Telecommunication Wavelength[J]. Acta Sinica Quantum Optica, 2017, 23(2): 99.

参考文献

[1] Jurgen A,Eden F,Dmitry K,et al.Quantum Memory for Squeezed Light[J]. Phys Rev Lett,2008,100(9): 093602.DOI:10.1103/PhysRevLeft.100.0903602.

[2] Dantan A,Pinard M. Quantum-state Transfer Between Fields and Atoms in Electromagnetically Induced Transparency[J]. Phys Rev A,2004,69(4): 043810.DOI:10.1103/PhysRevLeft.100.0903602.

[3] Furusawa A,Serensen J L,Braunstein S L,et al.Unconditional Quantum Teleportation[J]. Science,1998,282(5389):706-709.DOI:10.1126/Science,282.5389.706.

[4] Jing J T,Zhang J,Yan Y,et al.Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Phys Rev Lett,2003,90 (16):167903.DOI:10.1103/PhysRevLeft.90.167903.

[5] Braunstein S L and Loock P V. Quantum Information With Continuous Variables[J]. Rev Mod Phys,2005,77: 513-577.DOI:10.1109/IQEC.2000.907786.

[6] Su X L,Hao S H,Deng X W,et al.Gate Sequence for Continuous Variable One-way Quantum Computation[J]. Nat Commun,2013,4: 2828.DOI:10.1038/ncomms3828.

[7] The LIGO Scientific Collaboration. A Gravitational Wave Observatory Operating Beyond the Quantum Shot-noise Limit[J]. Nat Phys,2011,7(12): 962-965.DOI:10.1088 10264-9381/27119/199602.

[8] Caves C M. Quantum-mechanical Noise in an Interferometer[J]. Phys Rev D,1981,23: 1693.DOI:10.1103/PhysRevp.23.1693.

[9] Grangier P,Slusher R,Yurke B,et al.Squeezed-Light-Enhanced Polarization Interferometer[J]. Phys Rev Lett,1987,59:2153.DOI:10.1103/PhysRevLeft.59,278.

[10] Xiao M,Wu L A,Kimble H J. Precision Measurement Beyond the Shot-Noise Limit[J]. Phys Rev Lett,1987,59(3): 278-281.DOI:10.1103/PhysRevLeft.59.278.

[11] Yonezawa H,Nakane D,Wheatley T A,et al.Quantum-Enhanced Optical Phase Tracking[J]. Science,2012,337: 1514.DOI:10.1126/Science.1225258.

[12] Sun H X,Liu K,Liu Z L,et al.Small-Displacement Measurements Using High-Order Hermite-Gauss Modes[J]. Appl Phys Lett,2014,104: 121908.DOI:http:∥dx.doi.org/10.106./1.4869819.

[13] Goda K,Miyakawa O,Mikhailov E E,et al.A Quantum-Enhanced Prototype Gravitational-Wave Detector[J]. Nat Phys,2008,4:472-476.DOI:10.10381/nphys920.

[14] The LIGO Scientific Collaboration. Enhanced Sensitivity of the LIGO Gravitational Wave Detector by Using Squeezed States of Light[J]. Nat Photonics,2008,7:613-619.DOI:10.1038/nphoton.2013.177.

[15] Wu L A,Xiao M,Kimble H J. Squeezed States of Light from an Optical Parametric Oscillator[J]. J Opt Soc Am B,1987,4(10): 1465-1475.https:∥doi. org/10.13641 JOSAB. 4. 001465.

[16] Takeno Y,Yukawa M,Yonezawa H,et al.Observation of 9 dB Quadrature Squeezing With Improvement of Phase Stability in Homodyne Measurement[J]. Opt. Express,2007,15: 4321.https:∥doi:org/10.136410E.15.004321.

[17] Vahlbruch H,Mehmet M,Chelkowski S,et al.Observation of Squeezed Light With 10 dB Quantum Noise Reduction[J]. Phys Rev Lett,2008,100: 033602.DOI:10.1103/PhysRevLeft.100.033602.

[18] Vahlbruch H,Mehmet M,Danzmann K,et al.Detection of 15 dB Squeezed States of Light and Their Application for the Absolute Calibration of Photoelectric Quantum Efficiency [J]. Phys Rev Lett,2016,117: 110801.DOI:10.1103/Phys Rev Left. 117.110801.

[19] Zhou Y Y,Jia X J,Li F,et al.Experimental Generation of 84 dB Entangled State with an Optical Cavity Involving a Wedged Type-II Nonlinear Crystal[J]. Opt Express,2015,23: 4953-4959.DOI:10.1364/OE.23. 004952.

[20] Chua S,Slagmolen B,Shaddock D A,et al.Quantum Squeezed Light in Gravitational-Wave Detectors[J]. Class Quantum Grav,2014,31: 183001.DOI:10.1088/0264-9381/31118/183001.

[21] Vahlbruch H,Chelkowski S,Hage B,et al.Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band[J]. Phys Rev Lett,2006,97: 011101.DOI:10.1103/PhysRevLeft.97.011101.

[22] Stefszky M,Mow-lowry C,Chua S,et al.Balanced Homodyne Detection of Optical Quantum States at Audio Band Frequencies and Below[J]. Class Quantum Grav,2012,29: 145015.DOI:10.1088/0264_9381/29/141/145015.

[23] LIGO Scientific Collaboration,Virgo Collaboration,ABBOTTBP,ABBOTTR,et al.An Upper Limit on the Stochastic Gravitational Wave Background of Cosmological Origin[J]. Nature,2009,460(7258): 990-4.DOI:10.1038/nature08278.

[24] Rowan S,Hough J,Crooks D R M. Thermal Noise and Material Issues for Gravitational Wave Detectors[J]. Phys Lett A,2005,347: 25-32.DOI:10.1109/sam.2004.1502934.

[25] Feng J X,Tian X T,Li Y M,et al.Generation of a Squeezing Vacuum at a Telecommunication Wavelength With Periodically Poled LiNbO3[J]. Appl Phys Lett,2008,92(22): 221102.DOI:http:∥dx.doi.org/10.1063∥2938053.

[26] Mehmet M,Ast S,Eberle T,et al.Squeezed Light at 1550 nm With a Quantum Noise Reduction of 123 dB[J]. Optics Expres,2011,19(25): 25763-25772.DOI:10.1364/OE.19. 025763.

要立婷, 冯晋霞, 高英豪, 张宽收. 光通信波段低频压缩态光场的实验制备[J]. 量子光学学报, 2017, 23(2): 99. YAO Li-ting, FENG Jin-xia, GAO Ying-hao, ZHANG Kuan-shou. Generation of a Low-frequency Squeezed States at Telecommunication Wavelength[J]. Acta Sinica Quantum Optica, 2017, 23(2): 99.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!