光学学报, 2018, 38 (12): 1206002, 网络出版: 2019-05-10   

蛙人协作中的水下无线光通信邻居发现方法 下载: 915次

Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication
作者单位
1 西安理工大学自动化与信息工程学院, 陕西 西安 710048
2 西南科技大学特殊环境机器人技术四川省重点实验室, 四川 绵阳 621010
3 北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
引用该论文

赵太飞, 王晶, 张杰, 江亮. 蛙人协作中的水下无线光通信邻居发现方法[J]. 光学学报, 2018, 38(12): 1206002.

Taifei Zhao, Jing Wang, Jie Zhang, Liang Jiang. Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication[J]. Acta Optica Sinica, 2018, 38(12): 1206002.

参考文献

[1] 薛青丽. 蛙人输送艇挺进水下特种战场[J]. 当代海军, 2004( 3): 44- 45.

    薛青丽. 蛙人输送艇挺进水下特种战场[J]. 当代海军, 2004( 3): 44- 45.

    Xue QL. Frogman transporter advances underwater special battle field[J]. Modern Navy, 2004( 3): 44- 45.

    Xue QL. Frogman transporter advances underwater special battle field[J]. Modern Navy, 2004( 3): 44- 45.

[2] 滕俊, 郭万海, 刘冬利. 国外海军水下特种作战研究[J]. 舰船电子对抗, 2012, 35(4): 39-42.

    滕俊, 郭万海, 刘冬利. 国外海军水下特种作战研究[J]. 舰船电子对抗, 2012, 35(4): 39-42.

    Teng J, Guo W H, Liu D L. Research into underwater special operation of foreign navy[J]. Shipboard Electronic Countermeasure, 2012, 35(4): 39-42.

    Teng J, Guo W H, Liu D L. Research into underwater special operation of foreign navy[J]. Shipboard Electronic Countermeasure, 2012, 35(4): 39-42.

[3] Shah GA. A survey on medium access control in underwater acoustic sensor networks[C]∥2009 International Conference on Advanced Information Networking and Applications Workshops, May 26-29, 2009, Bradford, UK. New York: IEEE, 2009: 1178- 1183.

    Shah GA. A survey on medium access control in underwater acoustic sensor networks[C]∥2009 International Conference on Advanced Information Networking and Applications Workshops, May 26-29, 2009, Bradford, UK. New York: IEEE, 2009: 1178- 1183.

[4] 王红华, 佘亚军, 罗涛. 拖曳天线用于无线电导航定位试验研究[J]. 舰船科学技术, 2009, 31(12): 96-98.

    王红华, 佘亚军, 罗涛. 拖曳天线用于无线电导航定位试验研究[J]. 舰船科学技术, 2009, 31(12): 96-98.

    Wang H H, She Y J, Luo T. Study on radio navigation and position experiment with trailing wire antenna[J]. Ship Science and Technology, 2009, 31(12): 96-98.

    Wang H H, She Y J, Luo T. Study on radio navigation and position experiment with trailing wire antenna[J]. Ship Science and Technology, 2009, 31(12): 96-98.

[5] Huang A P. E100-[J]. Tao L W. Monte Carlo based channel characteristics for underwater optical wireless communications. IEICE Transactions on Communications, 2017, B(4): 612-618.

    Huang A P. E100-[J]. Tao L W. Monte Carlo based channel characteristics for underwater optical wireless communications. IEICE Transactions on Communications, 2017, B(4): 612-618.

[6] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

    Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

[7] Haltrin V I. Chlorophyll-based model of seawater optical properties[J]. Applied Optics, 1999, 38(33): 6826-6832.

    Haltrin V I. Chlorophyll-based model of seawater optical properties[J]. Applied Optics, 1999, 38(33): 6826-6832.

[8] Tivy M, Fucile P, Sichel E. A low power, low cost, underwater optical communication system[J]. Ridge 2000 Event 2, 2004: 27-29.

    Tivy M, Fucile P, Sichel E. A low power, low cost, underwater optical communication system[J]. Ridge 2000 Event 2, 2004: 27-29.

[9] Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

    Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

[10] Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3-14.

    Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3-14.

[11] 胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12): 1206003.

    胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12): 1206003.

    Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.

    Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.

[12] 杜劲松, 周田华, 陈卫标, 等. 基于LDPC和PPM的水下光通信性能分析[J]. 激光与光电子学进展, 2016, 53(12): 120605.

    杜劲松, 周田华, 陈卫标, 等. 基于LDPC和PPM的水下光通信性能分析[J]. 激光与光电子学进展, 2016, 53(12): 120605.

    Du J S, Zhou T H, Chen W B, et al. Performance analysis of underwater optical communication based on LDPC and PPM[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120605.

    Du J S, Zhou T H, Chen W B, et al. Performance analysis of underwater optical communication based on LDPC and PPM[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120605.

[13] Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937-27947.

    Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937-27947.

[14] ZhangR, ZhangY. Wormhole-resilient secure neighbor discovery in underwater acoustic networks[C]∥2010 Proceedings IEEE INFOCOM, March 14-19, 2010, San Diego, CA, USA. New York: IEEE, 2010: 11291509.

    ZhangR, ZhangY. Wormhole-resilient secure neighbor discovery in underwater acoustic networks[C]∥2010 Proceedings IEEE INFOCOM, March 14-19, 2010, San Diego, CA, USA. New York: IEEE, 2010: 11291509.

[15] PetrocciaR. A distributed ID assignment and topology discovery protocol for underwater acoustic networks[C]∥2016 IEEE Underwater Communications and Networking Conference, August 30-Septmber 1, 2016, Lerici, Italy. New York: IEEE, 2016: 16357675.

    PetrocciaR. A distributed ID assignment and topology discovery protocol for underwater acoustic networks[C]∥2016 IEEE Underwater Communications and Networking Conference, August 30-Septmber 1, 2016, Lerici, Italy. New York: IEEE, 2016: 16357675.

[16] Kalaiselvan S A, Parthasarathy V. Location verification based neighbor discovery for shortest routing in underwater acoustic sensor network[J]. Advances in Environmental Biology, 2015, 9(14): 117-121.

    Kalaiselvan S A, Parthasarathy V. Location verification based neighbor discovery for shortest routing in underwater acoustic sensor network[J]. Advances in Environmental Biology, 2015, 9(14): 117-121.

[17] Arnon S, Kedar D. Non-line-of-sight underwater optical wireless communication network[J]. Journal of the Optical Society of America A, 2009, 26(3): 530-539.

    Arnon S, Kedar D. Non-line-of-sight underwater optical wireless communication network[J]. Journal of the Optical Society of America A, 2009, 26(3): 530-539.

[18] Liu W H, Xu Z Y, Yang L Q. SIMO detection schemes for underwater optical wireless communication under turbulence[J]. Photonics Research, 2015, 3(3): 48-53.

    Liu W H, Xu Z Y, Yang L Q. SIMO detection schemes for underwater optical wireless communication under turbulence[J]. Photonics Research, 2015, 3(3): 48-53.

[19] Oubei H M. ElAfandy R T, Park K H, et al. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations[J]. IEEE Photonics Journal, 2017, 9(2): 7903009.

    Oubei H M. ElAfandy R T, Park K H, et al. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations[J]. IEEE Photonics Journal, 2017, 9(2): 7903009.

[20] Oubei H M, Zedini E. ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455-2458.

    Oubei H M, Zedini E. ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455-2458.

赵太飞, 王晶, 张杰, 江亮. 蛙人协作中的水下无线光通信邻居发现方法[J]. 光学学报, 2018, 38(12): 1206002. Taifei Zhao, Jing Wang, Jie Zhang, Liang Jiang. Neighbor Discovery Method for Frogmen Cooperation in Underwater Wireless Optical Communication[J]. Acta Optica Sinica, 2018, 38(12): 1206002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!