光学学报, 2019, 39 (12): 1214002, 网络出版: 2019-12-06   

基于反共振空芯光纤的4.3 μm二氧化碳激光器 下载: 1197次

Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers
崔宇龙 1,2,3周智越 1,2,3黄威 1,2,3李智贤 1,2,3王泽锋 1,2,3,*
作者单位
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
引用该论文

崔宇龙, 周智越, 黄威, 李智贤, 王泽锋. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002.

Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Zefeng Wang. Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002.

参考文献

[1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[2] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751.

[3] Chang T, Wood O. An optically pumped CO2 laser[J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 598.

[4] Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser[J]. IEEE Journal of Quantum Electronics, 1994, 30(10): 2395-2400.

[5] Nampoothiri A V V, Ratanavis A, Campbell N, et al. . Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band[J]. Optics Express, 2010, 18(3): 1946-1951.

[6] Fedorov V V, Mirov S B, Gallian A, et al. 3.77-5.05-μm tunable solid-state lasers based on Fe 2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE Journal of Quantum Electronics, 2006, 42(9): 907-917.

[7] Vurgaftman I, Meyer J R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers[J]. Journal of Applied Physics, 2006, 99(12): 123108.

[8] Jiang X, Joly N Y, Finger M A, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre[J]. Nature Photonics, 2015, 9(2): 133-139.

[9] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885.

[10] Woodward R I, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 2018, 43(7): 1471-1474.

[11] Maes F, Fortin V, Bernier M, et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 2017, 42(11): 2054-2057.

[12] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 2016, 41(7): 1676-1679.

[13] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5(7): 761-764.

[14] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.

[15] Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 2006, 31(24): 3574-3576.

[16] Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm[J]. Optics Express, 2011, 19(2): 1441-1448.

[17] Yu F, Knight J C. Negative curvature hollow-core optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 146-155.

[18] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.

[19] Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11(10): 105807.

[20] Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 2016, 41(21): 5118-5121.

[21] Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 2018, 43(19): 4671-4674.

[22] Astapovich M S, Gladyshev A V, Khudyakov M M, et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 2019, 31(1): 78-81.

[23] Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. . Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited][J]. Optical Materials Express, 2012, 2(7): 948-961.

[24] Wang Z F, Belardi W, Yu F, et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J]. Optics Express, 2014, 22(18): 21872-21878.

[25] Hassan M R A, Yu F, Wadsworth W J, et al. . Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 2016, 3(3): 218-221.

[26] 王泽锋, 于飞, Wadsworth W J, 等. 单程高增益1.9 μm光纤气体拉曼激光器[J]. 光学学报, 2014, 34(8): 0814004.

    Wang Z F, Yu F, Wadsworth W J, et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.

[27] 陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源[J]. 光学学报, 2016, 36(5): 0506002.

    Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36(5): 0506002.

[28] 顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联SRS的红绿蓝色激光[J]. 光学学报, 2016, 36(8): 0806005.

    Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 2016, 36(8): 0806005.

[29] 陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器[J]. 光学学报, 2017, 37(5): 0514002.

    Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 2017, 37(5): 0514002.

[30] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 2017, 42(20): 4055-4058.

[31] Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers[J]. Optics Express, 2018, 26(15): 19144-19153.

[32] Aghbolagh F B A, Nampoothiri V, Debord B, et al. . Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 2019, 44(2): 383-386.

[33] The HITRAN database[DB/OL]. [2019-07-07].http:∥hitran.org/.

[34] Yi H M, Liu Q N, Gameson L, et al. High-accuracy 12C 16O2 line intensities in the 2 μm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206: 367-377.

[35] HerzbergG, Spinks J W T. Molecular spectra and molecular structure: diatomic molecules[M]. New York: Prentice-Hall, 1939.

[36] Jones A M, Fourcade-Dutin C, Mao C, et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers[J]. Proceedings of SPIE, 2012, 8237: 82373Y.

[37] Gu B, Chen Y B, Wang Z F. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering[J]. Optical Engineering, 2016, 55(12): 126114.

[38] Siegman AE. Lasers[M]. California: University Science Books, 1986.

崔宇龙, 周智越, 黄威, 李智贤, 王泽锋. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002. Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Zefeng Wang. Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!