中国光学, 2017, 10 (5): 656, 网络出版: 2017-11-24   

太赫兹大气遥感技术

Terahertz atmosphere remote sensing
作者单位
1 北京理工大学 信息与电子学院,北京 100081
2 荷兰代尔夫特理工大学,代尔夫特 2628 CN 荷兰
引用该论文

胡伟东, 季金佳, 刘瑞婷, 王雯琦, Leo P. LIGTHART. 太赫兹大气遥感技术[J]. 中国光学, 2017, 10(5): 656.

HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656.

参考文献

[1] YAO J Q,WANG J L,ZHONG K,et al.. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics·Laser,2010,21(10):1582-1588.(in Chinese)

[2] PETER H S. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):910-928.

[3] ZHANG J Q,XUE CH,GAO G,et al.. Development and trend of cloud and aerosol optical remote sensing instrument[J]. Chinese Optics,2015,8(5):679-698.

[4] HU X H,LIU S T,PAN ZH D,et al.. The development of spaceborne shimmer detection instrument and its data application[J]. Chinese Optics,2015,8(3):350-359.

[5] KLEIN U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region[C]. The 17th Int Symp on Space THz Technology,Paris,France,2006:21-28.

[6] SOHN B J,CHUNG E S,SCHMETZ J,et al.. Estimating upper-tropospheric water vapor from SSM/T-2satellite measurements[J]. J. Appl. Meteor,2003,42:488-504.

[7] CLERBAUX C,TURQUETY S,COHEUR P. Infrared remote sensing of atmospheric composition and air quality:towards operational applications[J]. Comptes Rendus Geoscience,2010,342(4):349-356.

[8] WANG W,DONG J H,MENG Q Y. Development and trend of visible light remote sensing camera for Mars exploration[J]. Chinese Optics,2014,7(2):208-214.

[9] YING Y B,WANG J P,JIANG H Y. Inspecting diameter and defect area of fruit with machine vision[J]. Transactions of the CSAE,2002,18(5):216-220.

[10] WATERS J W,READ W G,FROIDEVAUX L,et al.. The UARS and EOS microwave limb sounder(MLS) experiments[J]. Journal of the Atmospheric Sciences,1998,56:194-218.

[11] WATERS J W,PECKHAM G E. The microwave limb sounder(MLS) experiments for UARS and EOS[J]. The International Society for Optical Engineering,1991:543-546.

[12] PUMPHREY H C,CLARK H L,HARWOOD R S. Lower stratospheric water vapor measured by UARS MLS[J]. Geophysical Research Letters,2000,27(12):1691-1694.

[13] BARATH F T,CHAVEZ M C,COFIELD R E,et al.. The upper atmosphere research satellite microwave limb sounder instrument[J]. J. Geophys Res,1993,98(10):751-762.

[14] BARON P,RICAUD P,et al.. Studies for the Odin sub-millimetre radiometer.II:Retrieval methodology[J]. Canadian Journal of Physics,2002,80(4):341-356.

[15] URBAN J,LAUTIE N,LE FLOCHMOEZ E,et al.. Odin/SMR limb observations of stratospheric trace gases:validation of N2O[J]. Journal of Geophysical Research,2005,110:D09301-D09320.

[16] LI X Y,CHEN L F,SU L,et al.. Development of submillimeter wave edge detection[J]. Journal of Remote Sensing,2013,6:1325-1344.

[17] YANG ZH D,LU N M,SHI J M,et al.. Overview of FY-3 satellite payload and ground application systems[J]. Meteorological Science and Technology,2013,4:6-12.

[18] DONG Y H. FY-4 meteorological satellite and its application prospect[J]. Shanghai Aerospace,2016,2:1-8.

[19] FRANKLIN E K,STEVEN J W,ANDREW J H,et al.. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research,2002,107(D3):4028-4048.

[20] VANEK M D,NOLT I G,TAPPAN N D,et al.. Far-infrared sensor for cirrus(FIRSC):an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl. Opt.,2001,40(13):2169-2176.

[21] EVANS K F,WANG J R,RACETTE P E,et al.. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society,2005,44:839-859.

[22] MARAZITA S M,BISHOP W L,HESLER J L,et al.. Integrated Ga As Schottky mixers by spin on dielectric wafer bonding[J]. IEEE Transactions on Electron Devices,2000,47(6):1152-1157.

[23] MARSH S,ALDERMAN B,MATHESON D,et al. Design of low-cost 183 GHz subharmonic mixers for commercial applications[J]. IET Circuits,Devices and Systems,2007,1(1):1-6

[24] TESSMANN A,LEUTHER A,SEHWOERER C,et al. Acoplanar 94 GHz low-noise amplifier MMIC using 007 μm. metamorphie cascode HEMTs[C]. IEEE MTT-S International Microwave Symposium Digest,IEEE,2003:1581-1584.

[25] BRYERTON E W,MEI X,KIM Y M,et al.. A W-band Low-Noise Amplifier with 22K noise temperature[C]. IEEE MTT-S International Microwave Symposium Digest,Boston,USA,2009:681-684.

[26] LU D R,HSU Y C,KAO J C,et al.. A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier[C]. IEEE MTT-S International Microwave Symposium Digest,Montreal,Canada,IEEE,2012:1-3.

[27] HROBAK M,STERNS M,SCHRAMM M,et al.. Planar zero bias Schottky diode detector operating in the E- and W-band[C]. 2013 European Microwave Conference(EuMC), IEEE,2013:179-182.

[28] LI S. Development of millimeter wave geophone[D]. Chengdu:University of Electronic Science and technology of China,2008:59-77.

[29] XUE W. W band broadband direct detection receiving front-end[D]. Chengdu:University of Electronic Science and technology of China,2013:39-50.

[30] AUSTON D H,SMITH P R. Cherenkov radiation from femtosecond optical pulses in elect ro-optic media[J]. Appl. Phys. Lett.,1984,53(16):1555-1558.

[31] FATTINGER CH ,GRISCHKOWSKY D. Point source terahertz optics[J]. Appl. Phys. Lett.,1988,53(16):1480-1482.

[32] LEITENSTORFER S,HUNSCHE J,SHAH M C,et al.. Detectors and sources for ultrabroadband electro-optic sampling:experiment and theory[J]. Appl. Phys. Lett.,1999,74(11):1516-1518.

[33] KONO S,TANI M,GU P,et al.. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses[J] . Appl. Phys. Lett.,2000,77(25):4104-4106.

[34] HAJENIUS M. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer[J]. Phys. Rev. Lett.,2006,100(7):074507.

[35] SEMENOV A D,HUBERS H W,RICHTER H. Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers[J]. IEEE Appl. Superconductivity,2003,13(2):168-171.

[36] WHYBORN N D. Heterodyne instrument for FIRST(HIFI):preliminary design[J]. SPIE,1998,3357:336-347.

[37] KOMIYAMA S,ASTAFIEV O,ANTONOV V V,et al.. A single-photon detector in the far-infrared range[J]. Nature,2000,403(6768):405-407.

[38] ASTAFIEV O,KOMIYAMA S,KUT SUWA T,et al.. Single-photon detector in the microwave range[J]. Phys. Rev. Lett.,2002,80(22):4250-4252.

胡伟东, 季金佳, 刘瑞婷, 王雯琦, Leo P. LIGTHART. 太赫兹大气遥感技术[J]. 中国光学, 2017, 10(5): 656. HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!