量子电子学报, 2019, 36 (3): 257, 网络出版: 2019-06-17   

远程拉曼光谱技术研究进展

Research progress of stand-off Raman spectroscopy
作者单位
中国计量科学研究院热工计量科学研究所, 北京 100013
引用该论文

王彦丁, 刘晓萌. 远程拉曼光谱技术研究进展[J]. 量子电子学报, 2019, 36(3): 257.

WANG Yanding, LIU Xiaomeng. Research progress of stand-off Raman spectroscopy[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 257.

参考文献

[1] Raman C V, Krishnan K S. The optical analogue of the Compton Effect [J]. Nature, 1928, 121(121): 711.

[2] Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry [J]. Applied Optics, 1974, 13(6): 1435-1437.

[3] Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power CW lasers [J]. Applied Spectroscopy, 1992, 4(7): 1085-1091.

[4] Aggarwal R L, Farrar L W, Polla D L. Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500 m [J]. Journal of Raman Spectroscopy, 2011, 42(3): 461-464.

[5] Pettersson A, Johansson I, Wallin S, et al. Near real-time stand-off detection of explosives in a realistic outdoor environment at 55 m distance [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(4): 297-306.

[6] Moros J, Lorenzo J A, Novotny K, et al. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting [J]. Journal of Raman Spectroscopy, 2013, 44(1): 121-130.

[7] Butt N R, Nilsson M, Jakobsson A, et al. Classification of Raman spectra to detect hidden explosives [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 517-521.

[8] Carter J C, Angel S M, Lawrencesnyder M, et al. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument [J]. Applied Spectroscopy, 2005, 59(6): 769-775.

[9] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2288-2298.

[10] Sharma S K, Misra A K, Lucey P G, et al. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters [J]. Applied Spectroscopy, 2006, 60(8): 871-876.

[11] Zachhuber B, Gasser C, Chrysostom E t H, et al. Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects [J]. Analytical Chemistry, 2011, 83(24): 9438-9442.

[12] Sharma S K, Misra A K, Clegg S M, et al. Remote-Raman spectroscopic study of minerals under supercritical CO 2 relevant to venus exploration [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 75-81.

[13] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters [J]. Applied Spectroscopy, 2002, 5(6): 699-705.

[14] Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2281-2287.

[15] Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials [J]. Bulletin of the Korean Chemical Society, 2014, 35(12): 3547-3552.

[16] Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy [J]. Defence Science Journal, 2017, 67(5): 588-591.

[17] Izake E L, Cletus B, Olds W, et al. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents [J]. Talanta, 2012, 94: 342-347.

[18] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers [J]. IEEE Sensors Journal, 2010, 10(3): 693-698.

[19] Gaft, Nagli. UV gated Raman spectroscopy for standoff detection of explosives [J]. Optical Materials, 2008, 30(11): 1739-1746.

[20] Pettersson A, Wallin S, stmark H, et al. Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection [C]. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV [M]. International Society for Optics and Photonics, 2010, 7664: 76641K.

[21] Wu M, Ray M, Hang Fung K, et al. Stand-off detection of chemicals by UV Raman spectroscopy [J]. Applied Spectroscopy, 2000, 54(6): 800-806.

[22] Loeffen P, Maskall G, Bonthron S, et al. Spatially offset Raman spectroscopy (SORS) for liquid screening [J]. Proc SPIE, 2011, 8189: 81890C.

[23] Fulton J. Remote detection of explosives using Raman spectroscopy [C]. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII [M]. International Society for Optics and Photonics, 2011, 8018: 80181A.

[24] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet (DUV) Raman for standoff detection [J]. Applied Spectroscopy, 2016, 70(5): 861-873.

[25] Bykov S V, Mao M, Gares K L, et al. Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer: Measurements of nitrate photochemistry [J]. Applied Spectroscopy, 2015, 69(8): 895-901.

[26] Chen T, Madey J M J, Price F M, et al. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse [J]. Applied Spectroscopy, 2007, 61(6): 624-629.

[27] Zachhuber B, Ramer G, Hobro A, et al. Stand-off Raman spectroscopy: A powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives [J]. Analytical and Bioanalytical Chemistry, 2011, 400(8): 2439-2447.

[28] Misra A K, Sharma S K, Acosta T E, et al. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime [J]. Applied Spectroscopy, 2012, 6(11): 1279-1285.

[29] Hokr B H, Bixler J N, Noojin G D, et al. Single-shot stand-off chemical identification of powders using random Raman lasing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 12320-12324.

[30] Gomer N R, Gordon C M, Lucey P, et al. Raman spectroscopy using a spatial heterodyne spectrometer: Proof of concept [J]. Applied Spectroscopy, 2011, 65(8): 849-857.

[31] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer [J]. Applied Spectroscopy, 2016, 70(4): 666-675.

[32] Hu G, Xiong W, Luo H, et al. The research of spatial heterodyne Raman spectroscopy with standoff detection [J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 3(12): 3951-3957 (in Chinese).

[33] Long H, Liu H, Li Z, et al. Narrow-linewidth tunable fiber laser for spectral calibration of spatial heterodyne spectrometer [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(3): 339-343 (in Chinese).

[34] Lin Q, Niu G, Wang Q, et al. Combined laser-induced breakdown with Raman spectroscopy: Historical technology development and recent applications [J]. Applied Spectroscopy Reviews, 2013, 48: 487-508.

[35] Sharma S K, Misra A K, Lucey P G, et al. Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1036-1045.

[36] Moros J, Laserna J J. New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform [J]. Analytical Chemistry, 2011, 83(16): 6275-6285.

[37] Sharma S K. New trends in telescopic remote Raman spectroscopic instrumentation [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1008-1022.

[38] Gasda P J, Acostamaeda T E, Lucey P G, et al. Next generation laser-based standoff spectroscopy techniques for Mars exploration [J]. Applied Spectroscopy, 2015, 69(2): 173-192.

[39] Acosta-Maeda T E, Misra A K, Muzangwa L G, et al. Remote Raman measurements of minerals, organics, and inorganics at 430 m range [J]. Applied Optics, 2016, 55(36): 10283-10289.

[40] Moros J, Lorenzo J A, Laserna J J. Standoff detection of explosives: Critical comparison for ensuing options on Raman spectroscopy LIBS sensor fusion [J]. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3353-3365.

[41] Measures R M. Laser Remote Sensing: Fundamentals and Applications [M]. Malabar, Fla: Krieger Publishing Company, 1992.

[42] Bremer M T, Dantus M. Detecting micro-particles of explosives at ten meters using selective stimulated Raman scattering [C]. CLEO: 2014, Optical Society of America, 2014: JTh2A.5.

[43] Svanqvist M, Glimtoft M, gren M, et al. Stand-off detection of explosives and precursors using compressive sensing Raman spectroscopy [C]. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII [M]. International Society for Optics and Photonics, 2016, 9824: 98240C.

王彦丁, 刘晓萌. 远程拉曼光谱技术研究进展[J]. 量子电子学报, 2019, 36(3): 257. WANG Yanding, LIU Xiaomeng. Research progress of stand-off Raman spectroscopy[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 257.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!