Photonics Research, 2020, 8 (3): 03000343, Published Online: Feb. 21, 2020  

Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system Download: 778次

Author Affiliations
1 School of Physics and Optoelectronic Technology, South China University of Technology, Guangzhou 510640, China
2 School of Physics, Peking University, Beijing 100871, China
Copy Citation Text

Bo Wang, Xian-Zhe Zeng, Zhi-Yuan Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system[J]. Photonics Research, 2020, 8(3): 03000343.

References

[1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58: 2059-2062.

[2] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[3] H. K. Lo, H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050-2056.

[4] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons. Nat. Photonics, 2012, 6: 605-609.

[5] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics—photon by photon. Nat. Photonics, 2014, 8: 685-694.

[6] O. Benson. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480: 193-199.

[7] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 2019, 18: 668-678.

[8] E. T. Jaynes, F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 1963, 51: 89-109.

[9] G. Khitrova, H. Gibbs, M. Kira, S. W. Koch, A. Scherer. Vacuum Rabi splitting in semiconductors. Nat. Phys., 2006, 2: 81-90.

[10] R. Thompson, G. Rempe, H. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett., 1992, 68: 1132-1135.

[11] G. Agarwal. Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity. Phys. Rev. Lett., 1984, 53: 1732-1734.

[12] A. Boca, R. Miller, K. Birnbaum, A. Boozer, J. McKeever, H. Kimble. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett., 2004, 93: 233603.

[13] J. D. Thompson, T. Tiecke, N. P. de Leon, J. Feist, A. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, M. D. Lukin. Coupling a single trapped atom to a nanoscale optical cavity. Science, 2013, 340: 1202-1205.

[14] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 1992, 69: 3314-3317.

[15] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432: 197-200.

[16] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432: 200-203.

[17] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 2007, 445: 896-899.

[18] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 2005, 95: 067401.

[19] T. Hakala, J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, P. Törmä. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett., 2009, 103: 053602.

[20] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 2015, 114: 157401.

[21] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 2017, 118: 237401.

[22] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535: 127-130.

[23] J. Bellessa, C. Bonnand, J. Plenet, J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 2004, 93: 036404.

[24] A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, M. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450: 402-406.

[25] D. Gomez, K. Vernon, P. Mulvaney, T. Davis. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano Lett., 2009, 10: 274-278.

[26] A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, N. J. Halas. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett., 2013, 13: 3281-3286.

[27] H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, Q. Gong. Efficient single photon emission and collection based on excitation of gap surface plasmons. Phys. Rev. Lett., 2015, 114: 193002.

[28] J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, Q. Gong. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Phys. Rev. Lett., 2017, 118: 073604.

[29] T. J. Antosiewicz, S. P. Apell, T. Shegai. Plasmon-exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photon., 2014, 1: 454-463.

[30] A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, T. Shegai. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett., 2019, 19: 189-196.

[31] T. P. Rossi, T. Shegai, P. Erhart, T. J. Antosiewicz. Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling. Nat. Commun., 2019, 10: 3336.

[32] G. Khitrova, H. Gibbs, F. Jahnke, M. Kira, S. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 1999, 71: 1591-1639.

[33] Z. Y. Li. Mesoscopic and microscopic strategies for engineering plasmon-enhanced Raman scattering. Adv. Opt. Mater., 2018, 6: 1701097.

[34] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419-422.

[35] C. Ciracì, R. Hill, J. Mock, Y. Urzhumov, A. Fernández-Domínguez, S. Maier, J. Pendry, A. Chilkoti, D. Smith. Probing the ultimate limits of plasmonic enhancement. Science, 2012, 337: 1072-1074.

[36] X.-L. Zhong, Z.-Y. Li. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity. Phys. Rev. B, 2013, 88: 085101.

[37] J. Li, H. Guo, Z.-Y. Li. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures. Photon. Res., 2013, 1: 28-41.

[38] H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas. Nanorice: a hybrid plasmonic nanostructure. Nano Lett., 2006, 6: 827-832.

[39] M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. D. Pury, C. Große, B. D. Nijs, J. Mertens, A. I. Tartakovskii, J. J. Baumberg. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 2017, 8: 1296.

[40] P. Törmä, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 2014, 78: 013901.

[41] T. Hartsfield, W.-S. Chang, S.-C. Yang, T. Ma, J. Shi, L. Sun, G. Shvets, S. Link, X. Li. Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. Proc. Natl. Acad. Sci. USA, 2015, 112: 12288-12292.

[42] Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon., 2012, 6: 56-61.

[43] X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kéna-Cohen, V. M. Menon. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon., 2015, 9: 30-34.

[44] MeystreP.SargentM., Elements of Quantum Optics (Springer, 2007).

[45] LiboffR. L., Introductory Quantum Mechanics (Pearson Education India, 2003).

[46] K. Patil, R. Pawar, P. Talap. Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys. Chem. Chem. Phys., 2000, 2: 4313-4317.

[47] R. C. Hilborn. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys., 1982, 50: 982-986.

[48] P. Nordlander, C. Oubre, E. Prodan, K. Li, M. Stockman. Plasmon hybridization in nanoparticle dimers. Nano Lett., 2004, 4: 899-903.

[49] YarivA.YehP., Photonics (Oxford University, 2007).

[50] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel. Superradiance of quantum dots. Nat. Phys., 2007, 3: 106-110.

Bo Wang, Xian-Zhe Zeng, Zhi-Yuan Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system[J]. Photonics Research, 2020, 8(3): 03000343.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!