Chinese Optics Letters, 2021, 19 (7): 071405, Published Online: Apr. 20, 2021   

Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited] Download: 536次

Author Affiliations
Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
Copy Citation Text

Bo Guo, Xinyu Guo, Lige Tang, Wenlei Yang, Qiumei Chen, Zhongyao Ren. Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited][J]. Chinese Optics Letters, 2021, 19(7): 071405.

References

[1] X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, F. Q. Wang. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 2013, 3: 2718.

[2] Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, Z. J. Fang. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter. IEEE Photon. J., 2010, 2: 571.

[3] Z. Y. Yan, X. H. Li, Y. L. Tang, P. P. Shum, X. Yu, Y. Zhang, Q. J. Wang. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express, 2015, 23: 4369.

[4] Y. G. Han, T. V. A. Tran, S. B. Lee. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber. Opt. Lett., 2006, 31: 697.

[5] Y. J. Yuan, Y. Yao, M. Yi, B. Guo, J. J. Tian. Multiwavelength fiber laser employing a nonlinear Brillouin optical loop mirror: experimental and numerical studies. Opt. Express, 2014, 22: 15352.

[6] J. Yao, J. P. Yao, Z. C. Deng. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise. Opt. Express, 2004, 12: 4529.

[7] Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, Y. X. Xia. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter. IEEE Photon. Technol. Lett., 2004, 16: 2015.

[8] A. P. Luo, Z. C. Luo, W. C. Xu. Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach–Zehnder interferometer. Opt. Lett., 2009, 34: 2135.

[9] J. B. Schlager, S. Kawanishi, M. Saruwatari. Dual-wavelength pulse generation using mode-locked erbium-doped fibre ring laser. Electron. Lett., 1991, 27: 2072.

[10] B. Bakhshi, P. A. Andrekson. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser. IEEE Photon. Technol. Lett, 1999, 11: 1387.

[11] V. J. Matsas, T. P. Newson, D. J. Richardson, D. N. Payne. Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett., 1992, 28: 1391.

[12] D. U. Noske, M. J. Guy, K. Rottwitt, R. Kashyap, J. R. Taylor. Dual-wavelength operation of a passively mode-locked “figure-of-eight” ytterbium-erbium fibre soliton laser. Opt. Commun., 1994, 108: 297.

[13] H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser. Opt. Express, 2009, 17: 12692.

[14] X. H. Li, K. Wu, Z. P. Sun, B. Meng, Y. G. Wang, Y. S. Wang, X. C. Yu, X. Yu, Y. Zhang, P. Shum, Q. J. Wang. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers. Sci. Rep., 2016, 6: 25266.

[15] Z. Q. Luo, J. Z. Wang, M. Zhou, H. Y. Xu, Z. P. Cai, C. C. Ye. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Phys. Lett., 2012, 9: 229.

[16] T. Zhu, Y. J. Rao, J. L. Wang. Characteristics of novel ultra-long-period fiber gratings fabricated by high-frequency CO2 laser pulses. Opt. Commun., 2007, 277: 84.

[17] X. W. Shu, B. Gwandu, L. R. Zhang, I. Bennion. Ultra-long-period fiber gratings. Opt. Commun., 2001, 4: 386.

[18] X. W. Shu, L. Zhang, I. Bennion. Fabrication and characterisation of ultra-long-period fibre gratings. Opt. Commun., 2002, 203: 277.

[19] T. Zhu, Y. Song, Y. J. Rao, Y. Zhu. Highly sensitive optical refractometer based on edge-written ultra-long-period fiber grating formed by periodic grooves. IEEE Sensors J., 2009, 9: 678.

[20] E. Perez, H. M. Chan, I. V. Tomov, H. P. Lee. Fabrication of ultra-compact long-period fiber grating through a differentially scanned CO2 laser. Proc. SPIE, 2006, 31: 6351.

[21] Y. Liu, S. L. Qu. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index. Optik, 2013, 124: 1303.

[22] S. P. Ugale, V. Mishra. Formation and characterization of non-uniform long and ultralong period reversible optical fiber gratings. Optik, 2014, 125: 3822.

[23] T. Almeida, R. Oliveira, P. André, A. Rocha, M. Facão, R. Nogueira. Automated technique to inscribe reproducible long-period gratings using a CO2 laser splicer. Opt. Lett., 2017, 42: 1994.

[24] Y. Song, T. Zhu, Y. J. Rao, Y. W. Zhao. A humidity sensor based on ultra-long-period fiber gratings with asymmetric refractive index modulation. Chin. J. Lasers, 2009, 36: 2042.

[25] B. Zou, K. S. Chang. Phase retrieval from transmission spectrum for long-period fiber gratings. J. Lightwave Technol., 2013, 31: 375.

[26] L. Fang, H. Z. Jia. Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings. Opt. Express, 2014, 22: 11488.

[27] S. M. Israelsen, K. Rottwitt. Broadband higher order mode conversion using chirped microbend long period gratings. Opt. Express, 2016, 24: 23969.

[28] G. Masri, S. Shahal, A. Klein, H. Duadi, M. Fridman. Polarization dependence of asymmetric off-resonance long period fiber gratings. Opt. Express, 2016, 24: 29843.

[29] H. Zhao, P. Wang, C. L. Zhu, R. Subramanian, H. P. Li. Analysis for the phase-diffusion effect in a phase-shifted helical long-period fiber grating and its pre-compensation. Opt. Express, 2017, 25: 19085.

[30] NiW.LuP.LuoC.FuX.LiuD.ZhangJ., “Simultaneous measurement of curvature and temperature based on thin core ultra-long-period fiber grating,” in 2016 21st OptoElectronics and Communications Conference & 2016 International Conference on Photonics in Switching (2016), p. 1.

[31] T. Zhu, Y. J. Rao, Q. J. Mo. Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating. IEEE Photon. Technol. Lett, 2005, 17: 744.

[32] B. P. Shang, Y. P. Miao, H. M. Zhang, C. W. Fei, L. J. Zu. Ultralong-period microfiber grating for simultaneous measurement of displacement and temperature. IEEE Photon. Technol. Lett., 2019, 31: 1763.

[33] S. Zhang, S. F. Deng, T. Geng, C. T. Sun, L. B. Yuan. A miniature ultra-long period fiber grating for simultaneous measurement of axial strain and temperature. Opt. Laser Technol., 2020, 126: 106121.

[34] W. J. Ni, P. Lu, X. Fu, S. Wang, Y. Sun, D. M. Liu, J. S. Zhang. Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultra-long period fiber grating. IEEE Photon. J., 2017, 9: 7100909.

[35] S. S. Zhang, C. Q. Fang, C. Zhang, J. Shi, J. Q. Yao. A compact ultra-long period fiber grating based on cascading up-tapers. IEEE Sens. J., 2020, 20: 8552.

[36] R. Slavík, Y. Park, M. Kulishov, J. Azaña. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt. Lett., 2009, 34: 3116.

[37] C. G. Tong, X. D. Chen, Y. Zhou, J. He, W. L. Yang, T. Geng, W. M. Sun, L. B. Yuan. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature. Opt. Rev., 2018, 25: 295.

[38] Y. H. Zhao, Y. Q. Liu, C. Y. Zhang, L. Zhang, G. J. Zheng, C. B. Mou, J. X. Wen, T. Y. Wang. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. Opt. Lett., 2017, 42: 4708.

[39] T. Erdogan. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A, 1997, 14: 1760.

[40] R. Slavík, M. Kulishov, Y. Park, J. Azaña. Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics. Opt. Lett., 2009, 34: 1045.

[41] C. L. Zhu, H. Zhao, P. Wang, R. Subramanian, H. P. Li. Enhanced flat-top band-rejection filter based on reflective helical long-period fiber gratings. IEEE Photon. Technol. Lett, 2017, 29: 964.

[42] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter. IEEE Photon. Technol. Lett., 1997, 9: 1343.

[43] Y. Zhou, K. Yan, R. S. Chen, C. Gu, L. X. Xu, A. T. Wang, Q. Zhan. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating. Appl. Phys. Lett., 2017, 110: 161104.

[44] Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, Y. Chung. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett, 2003, 15: 383.

[45] M. Yan, S. Y. Luo, L. Zhan, Z. M. Zhang, Y. X. Xia. Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings. Opt. Express, 2007, 15: 3685.

[46] X. S. Liu, L. Zhan, S. Y. Luo, Y. X. Wang, Q. S. Shen. Individually switchable and widely tunable multiwavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings. J. Lightwave Technol., 2011, 29: 3319.

[47] K. Intrachat, J. N. Kutz. Theory and simulation of passive mode-locking dynamics using a long-period fiber grating. IEEE J. Quantum. Electron., 2003, 39: 1572.

[48] A. S. Karar, T. Smy, A. L. Steele. Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating. IEEE J. Quantum. Electron., 2008, 44: 254.

[49] T. Geng, J. Li, W. L. Yang, M. W. An, H. Y. Zeng, F. Yang, Z. J. Cui, L. B. Yuan. Simultaneous measurement of temperature and strain using a long-period fiber grating with a micro-taper. Opt. Rev., 2016, 23: 657.

[50] B. Guo, Q. L. Xiao, S. H. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties and device applications. Laser Photon. Rev., 2019, 13: 1800327.

[51] B. K. Garside, T. K. Lim. Laser mode locking using saturable absorbers. J. Appl. Phys., 1973, 44: 2335.

[52] W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, D. Y. Tang. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser. J. Opt. Soc. Am. B, 2000, 17: 28.

[53] C. Baker, M. Rochette. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt. Express, 2010, 18: 12391.

[54] H. N. Zhang, P. F. Ma, M. X. Zhu, W. F. Zhang, G. M. Wang, S. G. Fu. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics, 2020, 9: 2557.

[55] AgrawalG. P., Nonlinear Fiber Optics, 6th ed. (Academic Press, 2019).

Bo Guo, Xinyu Guo, Lige Tang, Wenlei Yang, Qiumei Chen, Zhongyao Ren. Ultra-long-period grating-based multi-wavelength ultrafast fiber laser [Invited][J]. Chinese Optics Letters, 2021, 19(7): 071405.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!