光电工程, 2019, 46 (3): 1, 网络出版: 2019-04-07  

GdFeCo材料全光磁反转的微观三温度模型研究

Microscopic three-temperature model for all-optical switching in GdFeCo
作者单位
暨南大学光子技术研究院,广东省光纤传感与通信技术重点实验室,广东 广州 510632
引用该论文

姚涵, 王思聪, 魏琛, 曹耀宇, 李向平. GdFeCo材料全光磁反转的微观三温度模型研究[J]. 光电工程, 2019, 46(3): 1.

Yao Han, Wang Sicong, Wei Chen, Cao Yaoyu, Li Xiangping. Microscopic three-temperature model for all-optical switching in GdFeCo[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

参考文献

[1] Iwasaki S. Perpendicular magnetic recording – Evolution and future[J]. IEEE Transactions on Magnetics, 1984, 20(5): 657–662.

[2] Schewe H, Stephani D. Thin-film inductive heads for perpendicular recording[J]. IEEE Transactions on Magnetics, 1990, 26(6): 2966–2971.

[3] Nakamura Y, Iwasaki S. On the resolution of perpendicular magnetic head[J]. IEEE Transactions on Magnetics, 1984, 20(1): 105–107.

[4] Cumpson S R, Hidding P, Coehoorn R. A hybrid recording method using thermally assisted writing and flux sensitive detection[J]. IEEE Transactions on Magnetics, 2000, 36(5): 2271–2275.

[5] Rottmayer R E, Batra S, Buechel D, et al. Heat-assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2006, 42(10): 2417–2421.

[6] Kirilyuk A, Kimel A V, Rasing T. Ultrafast optical manipulation of magnetic order[J]. Reviews of Modern Physics, 2010, 82(3): 2731–2784.

[7] Stanciu C D, Hansteen F, Kimel A V, et al. All-optical magnetic recording with circularly polarized light[J]. Physical Review Letters, 2007, 99(4): 047601.

[8] Ostler T A, Barker J, Evans R F L, et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet[J]. Nature Communications, 2012, 3: 666.

[9] Gerrits T, van den Berg H A M, Hohlfeld J, et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping[J]. Nature, 2002, 418(6897): 509–512.

[10] Scholl A, Baumgarten L, Jacquemin R, et al. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission[J]. Physical Review Letters,1997, 79(22): 5146–5149.

[11] Gilbert L T. A lagrangian formulation of the gyromagnetic equation of the magnetization field[J]. Physical Review, 1955, 100: 1243.

[12] Landau L D, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[M]. Perspectives in Theoretical Physics. Pergamon, 1992: 51–65.

[13] Gilbert L T, Kelly M J. Proceedings of the Pittsburgh Conference on Magnetism and Magnetic Materials[M]. New York: American Institute of Electrical Engineers, 1955: 253.

[14] Dillon F J, Jr. Magnetism II[M]. New York: Academic Press, 1963.

[15] Kazantseva N, Hinzke D, Nowak U, et al. Towards multiscale modeling of magnetic materials: simulations of FePt[J]. Physical Review B, 2008, 77(18): 184428.

[16] Garanin A D. Generalized equation of motion for a ferromagnet[J]. Physica A: Statistical Mechanics and its Applications, 1991, 172(3): 470–491.

[17] Rebei A, Simionato M. Fluctuations of the magnetization in thin films due to conduction electrons[J]. Physical Review B, 2005, 71(17): 174415.

[18] Kuiper C K, Roth T, Schellekens J A. Spin-orbit enhanced demagnetization rate in Co/Pt-multilayers[J]. Applied Physics Letters, 2014, 105(20): 202402.

[19] Koopmans B, Malinowski G, Dalla Longa F, et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization[J]. Nature Materials, 2009, 9(3): 259–265. 要

[20] Cornelissen T D, Córdoba R, Koopmans B. Microscopic model for all optical switching in ferromagnets[J]. Applied Physics Letters, 2016, 108(14): 142405.

[21] Khorsand R A, Savoini M, Kirilyuk A. Role of magnetic circular dichroism in all-optical magnetic recording[J]. Physical Review Letters, 2012, 108(12): 127205.

[22] Wang S C, Wei C, Feng Y H. All-optical helicity-dependent magnetic switching by first-order azimuthally polarized vortex beams[J]. Physical Review Letters, 2018, 113(17): 171108.

[23] Wang S C, Cao Y Y, Li X P. Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy[J]. Optics Letters, 2017, 42(23): 5050–5053.

[24] Wang S C, Li X P, Zhou J Y, et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Optics Letters, 2014, 39(17): 5022–5025.

[25] Wang S C, Li X P, Zhou J Y, et al. All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording[J]. Optics Express, 2015, 23(10): 13530–13536.

[26] Wang S C, Luo J J, Zhu Z Q, et al. All-optical generation of magnetization with arbitrary three-dimensional orientations[J]. Optics Letters, 2018, 43(22): 5551–5554.

[27] Radu I, Vahaplar K, Stamm C, et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins[J]. Nature, 2011, 472(7342): 205–208.

[28] Evans R F L, Fan W J, Chureemart P. Atomistic spin model simulations of magnetic nanomaterials[J]. Journal of Physics: Condensed Matter, 2014, 26(10): 103202.

[29] Atxitia U, Chubykalo-Fesenko O. Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model[J]. Physical Review B, 2011, 84(14): 144414.

[30] Kazantseva N. Dynamic response of the magnetisation to picosecond heat pulses[D]. York, UK: The University of York, 2008: 1–128.

姚涵, 王思聪, 魏琛, 曹耀宇, 李向平. GdFeCo材料全光磁反转的微观三温度模型研究[J]. 光电工程, 2019, 46(3): 1. Yao Han, Wang Sicong, Wei Chen, Cao Yaoyu, Li Xiangping. Microscopic three-temperature model for all-optical switching in GdFeCo[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!