光学学报, 2020, 40 (19): 1904001, 网络出版: 2020-09-19   

基于三维开口谐振环阵列和微流通道的太赫兹超材料吸收体传感器 下载: 845次

Terahertz Metamaterial Absorber Sensor Based on Three-Dimensional Split-Ring Resonator Array and Microfluidic Channel
作者单位
内蒙古大学电子信息工程学院, 内蒙古 呼和浩特 010021
引用该论文

王鑫, 王俊林. 基于三维开口谐振环阵列和微流通道的太赫兹超材料吸收体传感器[J]. 光学学报, 2020, 40(19): 1904001.

Xin Wang, Junlin Wang. Terahertz Metamaterial Absorber Sensor Based on Three-Dimensional Split-Ring Resonator Array and Microfluidic Channel[J]. Acta Optica Sinica, 2020, 40(19): 1904001.

参考文献

[1] Fan X D, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 2008, 620(1/2): 8-26.

[2] Lin V S, Motesharei K, Dancil K P, et al. A porous silicon-based optical interferometric biosensor[J]. Science, 1997, 278(5339): 840-843.

[3] Yamana K, Ohtani Y, Nakano H, et al. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(20): 3429-3431.

[4] Liu B Q, Zhang B, Chen G N, et al. Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol[J]. Microchimica Acta, 2014, 181(1/2): 257-262.

[5] 毛前军, 冯春早. 基于磁激元的嵌套环超材料吸波器的吸收特性[J]. 光学学报, 2019, 39(8): 0816001.

    Mao Q J, Feng C Z. Absorptance properties of nested-ring metamaterial absorbers based on magnetic polaritons[J]. Acta Optica Sinica, 2019, 39(8): 0816001.

[6] 黄文媛. 电磁超材料单元损耗和太赫兹吸波体的优化设计[D]. 成都: 西南交通大学, 2013.

    Huang WY. Electromagnetic metamaterial unit loss and optimal design of terahertz absorber[D]. Chengdu: Southwest Jiaotong University, 2013.

[7] 王越, 冷雁冰, 董连和, 等. 基于石墨烯-金属混合结构的可调超材料吸波体设计[J]. 光学学报, 2018, 38(7): 0716001.

    Wang Y, Leng Y B, Dong L H, et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 2018, 38(7): 0716001.

[8] Wang J, Wang S, Singh R, et al. Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation[J]. Chinese Optics Letters, 2013, 11(1): 011602.

[9] Chen T, Li S Y, Sun H. Metamaterials application in sensing[J]. Sensors, 2012, 12(3): 2742-2765.

[10] 潘武, 闫彦君, 沈大俊. 基于类电磁诱导透明的太赫兹超材料传感器性能分析[J]. 红外技术, 2018, 40(7): 707-711.

    Pan W, Yan Y J, Shen D J. Performance analysis of terahertz metamaterial sensor based on electromagnetically induced transparency[J]. Infrared Technology, 2018, 40(7): 707-711.

[11] Tao H, Strikwerda A C, Liu M K, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010, 97(26): 261909.

[12] 张玉萍, 李彤彤, 吕欢欢, 等. 工字形太赫兹超材料吸波体的传感特性研究[J]. 物理学报, 2015, 64(11): 117801.

    Zhang Y P, Li T T, Lü H H, et al. Study on sensing characteristics of I-shaped terahertz metamaterial absorber[J]. Acta Physica Sinica, 2015, 64(11): 117801.

[13] Saadeldin A S. Hameed M F O, Elkaramany E M A, et al. Highly sensitive terahertz metamaterial sensor[J]. IEEE Sensors Journal, 2019, 19(18): 7993-7999.

[14] Janneh M, de Marcellis A, Palange E, et al. Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications[J]. Optics Communications, 2018, 416: 152-159.

[15] Li S Y, Ai X C, Wu R H, et al. Design and simulation verification an environmental change metamaterial sensor[J]. Optics Communications, 2018, 428: 251-257.

[16] Sabah C, Dincer F, Karaaslan M, et al. Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application[J]. Optics Communications, 2014, 322: 137-142.

[17] Wang W, Yan F P, Tan S Y, et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 2017, 5(6): 571-577.

[18] Singh R, Cao W, Al-Naib I. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 10(17): 171101.

[19] Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

[20] Chen J, Nie H, Peng C, et al. Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing[J]. Journal of Lightwave Technology, 2018, 36(16): 3481-3485.

[21] Wu PC, Hsu WL, Chen WT, et al. Plasmon coupling in vertical split-ring resonator metamolecules[J]. Scientific Reports, 5( 1): 9726.

[22] Wang W, Yan F P, Tan S Y, et al. Symmetry breaking and resonances hybridization in vertical split ring resonator metamaterials and the excellent sensing potential[J]. Journal of Lightwave Technology, 2019, 37(19): 5149-5157.

[23] Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, et al. Metamaterial-based microfluidic sensor for dielectric characterization[J]. Sensors and Actuators A: Physical, 2013, 189: 233-237.

[24] Hu X, Xu G Q, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 2016, 10(6): 962-969.

[25] WiwatcharagosesN, Park KY, Hejase JA, et al.Microwave artificially structured periodic media microfluidic sensor[C]∥2011 IEEE 61st Electronic Components and Technology Conference (ECTC), May 31-June 3, 2011, Lake Buena Vista, FL, USA.New York: IEEE Press, 2011: 1889- 1893.

[26] Kong Y, Cao J J, Qian W C, et al. Multiple Fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 2018, 10(6): 6804410.

王鑫, 王俊林. 基于三维开口谐振环阵列和微流通道的太赫兹超材料吸收体传感器[J]. 光学学报, 2020, 40(19): 1904001. Xin Wang, Junlin Wang. Terahertz Metamaterial Absorber Sensor Based on Three-Dimensional Split-Ring Resonator Array and Microfluidic Channel[J]. Acta Optica Sinica, 2020, 40(19): 1904001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!