发光学报, 2018, 39 (11): 1505, 网络出版: 2018-12-25   

超薄金壳包覆NaYF4∶Yb,Er@SiO2纳米结构的可控合成与表面增强上转换荧光

Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4∶Yb,Er@SiO2 Nanostructures
作者单位
1 长春工业大学 化学与生命科学学院, 材料科学高等研究院, 基础科学学院, 吉林 长春 130012
2 北华大学 物理学院, 吉林 吉林 132013
3 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
引用该论文

安西涛, 王月, 牟佳佳, 李静, 张立功, 骆永石, 陈力. 超薄金壳包覆NaYF4∶Yb,Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J]. 发光学报, 2018, 39(11): 1505.

AN Xi-tao, WANG Yue, MU Jia-jia, LI Jing, ZHANG Li-gong, LUO Yong-shi, CHEN Li. Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4∶Yb,Er@SiO2 Nanostructures[J]. Chinese Journal of Luminescence, 2018, 39(11): 1505.

参考文献

[1] CHEN C W, LEE P H, CHAN Y C, et al.. Plasmon-induced hyperthermia: hybrid upconversion NaYF4∶Yb/Er and gold nanomarterials for oral cancer photothermal therapy [J]. J. Mater. Chem. B, 2015, 3(42):8293-8302.

[2] DENG W, SUDHEENDRA L, ZHAO J, et al.. Upconversion in NaYF4∶Yb, Er nanoparticles amplified by metal nanostructures [J]. Nanotechnology, 2011, 22(32):325604.

[3] DONG B, XU S, SUN J, et al.. Multifunctional NaYF4∶Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy [J]. J. Mater. Chem., 2011, 21(17):6193-6200.

[4] LIU N, QIN W, QIN G, et al.. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4∶Yb, Tm hybrid nanostructures [J]. Chem. Commun., 2011, 47(27):7671-7673.

[5] FENG W, SUN L D, YAN C H. Ag nanowires enhanced upconversion emission of NaYF4∶Yb, Er nanocrystals via a direct assembly method [J]. Chem. Commun., 2009, 29(29):4393.

[6] AVERITT R D, SARKER D, HALAS N J. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth [J]. Phys. Rev. Lett., 2012, 78(22):4217-4220.

[7] OLDENBURG S J, AVERITT R D, WESTCOTT S L, et al.. Nanoengineering of optical resonances [J]. Chem. Phys. Lett., 1998, 288(2-4):243-247.

[8] JIN Y, GAO X. Plasmonic fluorescent quantum dots [J]. Nat. Nanotechnol., 2009, 4(9):571-576.

[9] ZHANG H, LI Y, IVANOV I A, et al.. Plasmonic modulation of the upconversion fluorescence in NaYF4∶Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem., 2010, 49(16):2865.

[10] LUOSHAN M, BAI L, BU C, et al.. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4∶Yb3+, Er3+ @SiO2@Au@TiO2, crystallites for dye-sensitized solar cells [J]. J. Power Sources, 2016, 307:468-473.

[11] LI L, GREEN K, HALLEN H, et al.. Enhancement of single particle rare earth doped NaYF4∶Yb, Er emission with a gold shell [J]. Nanotechnology, 2015, 26(2):20011.

[12] ZHAO P, ZHU Y, YANG X, et al.. Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured β-NaYF4∶Yb, Er@SiO2@Au nanocomposites [J]. J. Mater. Chem. A, 2014, 2:16523-16530.

[13] PRIYAM A, IDRIS N, ZHANG Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging [J]. J. Mater. Chem., 2011, 22(3):960-965.

[14] 涂浪平, 孔祥贵. NaYF4∶Yb, Er@SiO2与Au纳米粒子荧光共振能量传递系统的构建与研究 [J]. 发光学报, 2013, 34(2):149-153.

    TU L P, KONG X G. Studies on the constructure based on luminescnece resonant energy transfer between NaYF4∶Yb, Er@SiO2 nanostructure as donors and gold nanoparticle as acceptors [J]. Chin. J. Lumin., 2013, 34(2):149-153. (in Chinese)

[15] FUJII M, NAKANO T, IMAKITA K, et al.. Upconversion luminescence of Er and Yb Codoped NaYF4 nanoparticles with metal shells [J]. J. Phys. Chem. C, 2013, 117(2):1113-1120.

[16] HAN S, SAMANTA A, XIE X, et al.. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery [J]. Adv. Mater., 2017, 29(18):1700244.

[17] LI C, CHEN T, OCSOY I, et al.. Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging and therapy [J]. Adv. Funct. Mater., 2014, 24(12):1772-1780.

[18] QIAN L P, ZHOU L H, TOO H P, et al.. Gold decorated NaYF4∶Yb, Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells [J]. J. Nanopart. Res., 2011, 13(2):499-510.

[19] LI D, SHAO Q, DONG Y, et al.. A facile synthesis of small-sized and monodisperse hexagonal NaYF4∶Yb3+, Er3+ nanocrystals [J]. Chem. Commun., 2014, 50(97):15316-15318.

[20] GNANASAMMANDHAN M K, IDRIS N M, BANSAL A, et al.. Near-IR photoactivation using mesoporous silica-coated NaYF4∶Yb, Er/Tm upconversion nanoparticles [J]. Nat. Protocols, 2016, 11(4):688.

[21] LIU J N, BU W B, SHI J L. Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics [J]. Acc. Chem. Res., 2015, 48(7):1797-1805.

[22] TANG J, CHEN L, LI J, et al.. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4∶Yb, Er nanocrystals [J]. Nanoscale, 2015, 7(35):14752-14759.

[23] HAASE M, SCHFER H. Upconverting nanoparticles [J]. Angew. Chem. Int. Ed., 2011, 50(26):5808-5829.

安西涛, 王月, 牟佳佳, 李静, 张立功, 骆永石, 陈力. 超薄金壳包覆NaYF4∶Yb,Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J]. 发光学报, 2018, 39(11): 1505. AN Xi-tao, WANG Yue, MU Jia-jia, LI Jing, ZHANG Li-gong, LUO Yong-shi, CHEN Li. Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4∶Yb,Er@SiO2 Nanostructures[J]. Chinese Journal of Luminescence, 2018, 39(11): 1505.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!