Photonics Research, 2018, 6 (10): 10000943, Published Online: Sep. 25, 2018   

Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals

Author Affiliations
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hong Kong 999077, China
3 Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
4 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
5 e-mail: zhangwf@szu.edu.cn
6 e-mail: scruan@szu.edu.cn
Copy Citation Text

Ya-Pei Peng, Wei Lu, Pengpeng Ren, Yiqun Ni, Yunfeng Wang, Long Zhang, Yu-Jia Zeng, Wenfei Zhang, Shuangchen Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals[J]. Photonics Research, 2018, 6(10): 10000943.

References

[1] C. Yan, H. Zhao, D. F. Perepichka, F. Rosei. Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties. Small, 2016, 12: 3888-3907.

[2] L. E. Mackenzie, J. A. Goode, A. Vakurov, P. P. Nampi, S. Saha, G. Jose, P. A. Millner. The theoretical molecular weight of NaYF4: RE upconversion nanoparticles. Sci. Rep., 2018, 8: 1106.

[3] Y. Cho, S. W. Song, S. Y. Lim, J. H. Kim, C. R. Park, H. M. Kim. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+, Er3+ phosphors. Phys. Chem. Chem. Phys., 2017, 19: 7326-7332.

[4] M. Xu, D. Chen, P. Huang, Z. Wan, Y. Zhou, Z. Ji. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J. Mater. Chem. C, 2016, 4: 6516-6524.

[5] G. Chen, H. Qiu, P. N. Prasad, X. Chen. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114: 5161-5214.

[6] B. Yan, J.-C. Boyer, N. R. Branda, Y. Zhao. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc., 2011, 133: 19714-19717.

[7] B. Yan, J.-C. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc., 2012, 134: 16558-16561.

[8] F. Shi, Y. Zhao. Sub-10  nm and monodisperse b-NaYF4:Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence. J. Mater. Chem. C, 2014, 2: 2198-2203.

[9] L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, A. V. Zvyagin. Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces, 2016, 8: 11945-11953.

[10] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 2012, 6: 355-359.

[11] L. Florescu, S. John. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett., 2004, 93: 013602.

[12] A. L. Burin, H. Cao, M. A. Ratner. Understanding and control of random lasing. Phys. B Condens. Matter, 2003, 338: 212-214.

[13] A. Yadav, L. Zhong, J. Sun, L. Jiang, G. J. Cheng, L. Chi. Tunable random lasing behavior in plasmonic nanostructures. Nano Converg., 2017, 4: 1.

[14] D. S. Wiersma, S. Cavalieri. Light emission: a temperature-tunable random laser. Nature, 2001, 414: 708-709.

[15] R. C. Polson, Z. V. Varden. Random lasing in human tissues. Appl. Phys. Lett., 2004, 85: 1289-1291.

[16] D. S. Wiersma. The physics and applications of random lasers. Nat. Phys., 2008, 4: 359-367.

[17] Q. Song, S. Xiao, Z. Xu, V. M. Shalaev, Y. L. Kim. Random laser spectroscopy for nanoscale perturbation sensing. Opt. Lett., 2010, 35: 2624-2626.

[18] Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, Y. L. Kim. Detection of nanoscale structural changes in bone using random lasers. Biomed. Opt. Express, 2010, 1: 1401-1407.

[19] S. V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, Z. V. Vardeny. Cooperative emission in conjugated polymer thin films. Phys. Rev. Lett., 1997, 78: 729-732.

[20] R. C. Polson, Z. V. Vardeny. Organic random lasers in the weak-scattering regime. Phys. Rev. B, 2005, 71: 045205.

[21] G. D. Dice, S. Mujumdar, A. Y. Elezzabi. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett., 2005, 86: 131105.

[22] S. F. Yu, E. S. Leong. High-power single-mode ZnO thin-film random lasers. IEEE J. Quantum Electron., 2004, 40: 1186-1194.

[23] Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers. Laser Photon. Rev., 2017, 11: 1700212.

[24] H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, I.-D. Sun, L.-P. You, C.-H. Yan. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc., 2006, 128: 6426-6436.

[25] Z. Li, Y. Zhang. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 2008, 19: 345606.

[26] Q. Song, L. Liu, S. Xiao, X. Zhou, W. Wang, L. Xu. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser. Phys. Rev. Lett., 2006, 96: 033902.

[27] L. M. Jin, X. Chen, C. K. Siu, F. Wang, S. F. Yu. Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core shell nanoparticles via the use of laser cavity. ACS Nano, 2017, 11: 834-849.

[28] H.-I. Lin, K.-C. Shen, Y.-M. Liao, Y.-H. Li, P. Perumal, G. Haider, B. H. Cheng, W.-C. Liao, S.-Y. Lin, W.-J. Lin, T.-Y. Lin, Y.-F. Chen. Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action. ACS Photon., 2018, 5: 718-727.

[29] X. Xu, W. Zhang, L. Jin, J. Qiu, S. F. Yu. Random lasing in Eu(3)(+) doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation. Nanoscale, 2015, 7: 16246-16250.

Ya-Pei Peng, Wei Lu, Pengpeng Ren, Yiqun Ni, Yunfeng Wang, Long Zhang, Yu-Jia Zeng, Wenfei Zhang, Shuangchen Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals[J]. Photonics Research, 2018, 6(10): 10000943.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!