中国激光, 2018, 45 (6): 0606004, 网络出版: 2018-07-05   

光纤布拉格光栅损耗特性的测量与分析 下载: 1054次

Measurement and Analysis of Loss in Fiber Bragg Gratings
作者单位
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
引用该论文

王迪, 皮浩洋, 李璇, 杨飞, 叶青, 蔡海文. 光纤布拉格光栅损耗特性的测量与分析[J]. 中国激光, 2018, 45(6): 0606004.

Di Wang, Haoyang Pi, Xuan Li, Fei Yang, Qing Ye, Haiwen Cai. Measurement and Analysis of Loss in Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0606004.

参考文献

[1] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

    Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

[2] 黄景堂, 黄旭光, 赵华伟. 阵列波导光栅解调的准分布式光纤光栅传感器[J]. 光学学报, 2008, 28(11): 2067-2071.

    黄景堂, 黄旭光, 赵华伟. 阵列波导光栅解调的准分布式光纤光栅传感器[J]. 光学学报, 2008, 28(11): 2067-2071.

    Huang J T, Huang X G, Zhao H W. Quasi-distributed fiber Bragg grating sensors using the interrogation of arrayed waveguide grating[J]. Acta Optica Sinica, 2008, 28(11): 2067-2071.

    Huang J T, Huang X G, Zhao H W. Quasi-distributed fiber Bragg grating sensors using the interrogation of arrayed waveguide grating[J]. Acta Optica Sinica, 2008, 28(11): 2067-2071.

[3] 刘胜, 韩新颖, 熊玉川, 等. 基于弱光纤光栅阵列的分布式振动探测系统[J]. 中国激光, 2017, 44(2): 0210001.

    刘胜, 韩新颖, 熊玉川, 等. 基于弱光纤光栅阵列的分布式振动探测系统[J]. 中国激光, 2017, 44(2): 0210001.

    Liu S, Han X Y, Xiong Y C, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001.

    Liu S, Han X Y, Xiong Y C, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001.

[4] Zhang L, Wei F, Sun G, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388.

    Zhang L, Wei F, Sun G, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388.

[5] 江璐芸, 王凌华, 林中晞, 等. 光反馈对光纤光栅外腔半导体激光器特性的影响[J]. 中国激光, 2016, 43(7): 0701008.

    江璐芸, 王凌华, 林中晞, 等. 光反馈对光纤光栅外腔半导体激光器特性的影响[J]. 中国激光, 2016, 43(7): 0701008.

    Jiang L Y, Wang L H, Lin Z X, et al. Effect of optical feedback on characteristic of the fiber grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2016, 43(7): 0701008.

    Jiang L Y, Wang L H, Lin Z X, et al. Effect of optical feedback on characteristic of the fiber grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2016, 43(7): 0701008.

[6] 王耀兴, 李唐军, 钟康平. 宽带可调谐FBG色散补偿器系统设计[J]. 光通信研究, 2012( 1): 46- 47.

    王耀兴, 李唐军, 钟康平. 宽带可调谐FBG色散补偿器系统设计[J]. 光通信研究, 2012( 1): 46- 47.

    Wang YX, Li TJ, Zhong KP. Study and design of a novel wideband tunable dispersion compensation system of fiber Bragg grating[J]. Study on Optical Communications, 2012( 1): 46- 47.

    Wang YX, Li TJ, Zhong KP. Study and design of a novel wideband tunable dispersion compensation system of fiber Bragg grating[J]. Study on Optical Communications, 2012( 1): 46- 47.

[7] ZabezhailovM, TomashukA, NikolinI, et al. Radiation-induced absorption in optical fibers in the near-infrared region: the effect of H2- and D2-loading[C]∥Proceedings of the Radiation and Its Effects on Components and Systems, 2001: 192- 194.

    ZabezhailovM, TomashukA, NikolinI, et al. Radiation-induced absorption in optical fibers in the near-infrared region: the effect of H2- and D2-loading[C]∥Proceedings of the Radiation and Its Effects on Components and Systems, 2001: 192- 194.

[8] KashyapR. Fiber Bragg gratings[M]. New York: Academic Press, 2009.

    KashyapR. Fiber Bragg gratings[M]. New York: Academic Press, 2009.

[9] BernardP, BessardJ, BrochuG, et al. Active thermography for reliability assessment of high power fiber laser FBG reflectors[C]∥Proceedings of the Fiber Laser Applications, 2011, FThE: FThE12.

    BernardP, BessardJ, BrochuG, et al. Active thermography for reliability assessment of high power fiber laser FBG reflectors[C]∥Proceedings of the Fiber Laser Applications, 2011, FThE: FThE12.

[10] DietmarJ, FrankK, HagenR, et al. UV-induced absorption, scattering and transition losses in UV side written fiber[C]∥Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication, 1999, 3: 50- 52.

    DietmarJ, FrankK, HagenR, et al. UV-induced absorption, scattering and transition losses in UV side written fiber[C]∥Optical Fiber Communication Conference, and the International Conference on Integrated Optics and Optical Fiber Communication, 1999, 3: 50- 52.

[11] 谭中伟, 李彬, 王燕花, 等. 光纤的紫外曝光引起的背景损耗[J]. 中国激光, 2007, 34(2): 239-242.

    谭中伟, 李彬, 王燕花, 等. 光纤的紫外曝光引起的背景损耗[J]. 中国激光, 2007, 34(2): 239-242.

    Tan Z W, Li B, Wang Y H, et al. Background loss of the fiber induced by the ultraviolet light exposure[J]. Chinese Journal of Lasers, 2007, 34(2): 239-242.

    Tan Z W, Li B, Wang Y H, et al. Background loss of the fiber induced by the ultraviolet light exposure[J]. Chinese Journal of Lasers, 2007, 34(2): 239-242.

[12] Ding M, Chen D, Fang Z, et al. Photothermal effects in phase shifted FBG with varied light wavelength and intensity[J]. Optics Express, 2016, 24(22): 25370-25379.

    Ding M, Chen D, Fang Z, et al. Photothermal effects in phase shifted FBG with varied light wavelength and intensity[J]. Optics Express, 2016, 24(22): 25370-25379.

[13] WangD, DingM, Pi HY, et al. Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity[J]. Chinese Physics B, 27( 2): 24207- 024207.

    WangD, DingM, Pi HY, et al. Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity[J]. Chinese Physics B, 27( 2): 24207- 024207.

[14] Eggleton B J. Littler I C M, Grujic T. Photothermal effects in fiber Bragg gratings[J]. Applied Optics, 2006, 45(19): 4679-85.

    Eggleton B J. Littler I C M, Grujic T. Photothermal effects in fiber Bragg gratings[J]. Applied Optics, 2006, 45(19): 4679-85.

[15] Mahakud R, Prakash O, Nakhe S V, et al. Analysis on the saturation of refractive index modulation in fiber Bragg gratings (FBGs) written by partially coherent UV beams[J]. Applied Optics, 2012, 51(12): 1828-1835.

    Mahakud R, Prakash O, Nakhe S V, et al. Analysis on the saturation of refractive index modulation in fiber Bragg gratings (FBGs) written by partially coherent UV beams[J]. Applied Optics, 2012, 51(12): 1828-1835.

[16] Albert J, Xiong L. Effect of writing beam spatial coherence on fiber Bragg grating modulation contrast and thermal stability[J]. Journal of the Optical Society of America B, 2009, 26(11): 2136-2142.

    Albert J, Xiong L. Effect of writing beam spatial coherence on fiber Bragg grating modulation contrast and thermal stability[J]. Journal of the Optical Society of America B, 2009, 26(11): 2136-2142.

王迪, 皮浩洋, 李璇, 杨飞, 叶青, 蔡海文. 光纤布拉格光栅损耗特性的测量与分析[J]. 中国激光, 2018, 45(6): 0606004. Di Wang, Haoyang Pi, Xuan Li, Fei Yang, Qing Ye, Haiwen Cai. Measurement and Analysis of Loss in Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0606004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!