中国激光, 2017, 44 (4): 0406001, 网络出版: 2017-04-10   

基于FPGA硬件控制平台的单模光纤自适应耦合技术 下载: 624次

Single-Mode Fiber Adaptive Coupling Technology Based on a FPGA Hardware Control Platform
黄冠 1,2,3,*耿超 1,2李枫 1,2,3李新阳 1,2
作者单位
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
引用该论文

黄冠, 耿超, 李枫, 李新阳. 基于FPGA硬件控制平台的单模光纤自适应耦合技术[J]. 中国激光, 2017, 44(4): 0406001.

Huang Guan, Geng Chao, Li Feng, Li Xinyang. Single-Mode Fiber Adaptive Coupling Technology Based on a FPGA Hardware Control Platform[J]. Chinese Journal of Lasers, 2017, 44(4): 0406001.

参考文献

[1] 白 帅, 王建宇, 张 亮, 等. 空间光通信发展历程及趋势[J]. 激光与光电子学进展, 2015, 52(7): 070001.

    Bai Shuai, Wang Jianyu, Zhang Liang, et al. Development progress and trends of space optical communications[J]. Laser & Optoelectronics Progress, 2015, 52(7): 070001.

[2] Dikmelik Y, Davidson F M. Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence[J]. Applied Optics, 2005, 44(23): 4946-4952.

[3] Toyoshima M. Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications[J]. Journal of the Optical Society of America A, 2006, 23(9): 2246-2250.

[4] Ma J, Zhao F, Tan L Y, et al. Plane wave coupling into single-mode fiber in the presence of random angular jitter[J]. Applied Optics, 2009, 48(27): 5184-5189.

[5] 罗 文, 耿 超, 李新阳. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34(6): 0606001.

    Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

[6] Takenaka H, Toyoshima M, Takayama Y. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks[J]. Optics Express, 2012, 20(14): 15301-15308.

[7] Chen M, Liu C, Xian H. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics[J]. Applied Optics, 2015, 54(29): 8722-8726.

[8] Weyrauch T, Vorontsov M A, Gowens J, et al. Fiber coupling with adaptive optics for free-space optical communication[C]. SPIE, 2002, 4489: 177-184.

[9] Luo W, Chao G, Wu Y Y, et al. Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler[J]. Chinese Physics B, 2014, 23(1): 260-265.

[10] Li F, Geng C, Li X Y, et al. Co-aperture transceiving of two combined beams based on adaptive fiber coupling control[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1787-1790.

[11] 刘红梅, 耿 超, 罗 文, 等. 自适应光纤准直器的谐振特性优化研究[J]. 光学学报, 2014, 34(s1): s106011.

    Liu Hongmei, Geng Chao, Luo Wen, et al. Optimal research of resonance characteristic of adaptive fiber-optics collimator[J]. Acta Optica Sinica, 2014, 34(s1): s106011.

[12] Noll R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211.

[13] 耿 超, 罗 文, 李新阳, 等. 一种激光束双向收发的自适应光纤耦合或准直器控制系统: 201310161222.7[P]. 2013-05-03.

    Geng Chao, Luo Wen, Li Xinyang, et al. A laser beam is fiber-coupled adaptive bidirectional transceiver or collimator control system: 201310161222.7[P]. 2013-05-03.

[14] Beresnev L A, Vorontsov M A. Design of adaptive fiber optics collimator for free-space communication laser transceiver[C]. SPIE, 2005, 5895: 58950R.

[15] Geng C, Li X Y, Zhang X J, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators[J]. Optics Communications, 2011, 284(24): 5531-5536.

[16] 耿 超, 李 枫, 王小林, 等. 大指向误差下的两路自适应光纤准直器200 W非相干合成实验[J]. 中国激光, 2015, 42(10): 1005001.

    Geng Chao, Li Feng, Wang Xiaolin, et al. 200 W incoherent beam combining of two adaptive fiber-optic collimators in large pointing-error condition[J]. Chinese J Lasers, 2015, 42(10): 1005001.

[17] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909.

[18] Laplante P A. Real-time systems design and analysis[M]. Wiley: John Wiley & Sons, Inc., 1993.

[19] Cohen M, Edwards R T, Cauwenberghs G, et al. Adopt: Analog VLSI stochastic optimization for adaptive optics[C]. International Joint Conference on Neural Networks, 1999: 6589823.

[20] 张金宝, 陈 波, 王彩霞, 等. 自适应光学系统SPGD控制算法的FPGA硬件实现[J]. 光电工程, 2009, 36(9): 46-51.

    Zhang Jinbao, Chen Bo, Wang Caixia, et al. FPGA hardware implementation of SPGD control algorithm for adaptive optics system[J]. Opto-Electronic Engineering, 2009, 36(9): 46-51.

[21] Huang Z M, Liu C L, Li J F, et al. A high-speed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm[J]. Quantum Electronics, 2014, 44(4): 301-305.

[22] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843.

黄冠, 耿超, 李枫, 李新阳. 基于FPGA硬件控制平台的单模光纤自适应耦合技术[J]. 中国激光, 2017, 44(4): 0406001. Huang Guan, Geng Chao, Li Feng, Li Xinyang. Single-Mode Fiber Adaptive Coupling Technology Based on a FPGA Hardware Control Platform[J]. Chinese Journal of Lasers, 2017, 44(4): 0406001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!