激光与光电子学进展, 2020, 57 (5): 050006, 网络出版: 2020-03-05   

单频2 μm波段全固态脉冲激光器技术进展 下载: 1379次

Development of Pulsed Single-Frequency 2 μm All-Solid-State Laser
作者单位
1 中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院上海光学精密机械研究所空间激光工程技术实验室, 上海 201800
引用该论文

陈忆兰, 朱小磊, 张俊旋, 刘继桥, 陈卫标. 单频2 μm波段全固态脉冲激光器技术进展[J]. 激光与光电子学进展, 2020, 57(5): 050006.

Yilan Chen, Xiaolei Zhu, Junxuan Zhang, Jiqiao Liu, Weibiao Chen. Development of Pulsed Single-Frequency 2 μm All-Solid-State Laser[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006.

参考文献

[1] Shuman T, Hovis F E, Singh U N, et al. Development of a TRL-5 conductively-cooled 2-micron laser transmitter for coherent Doppler wind lidar system[J]. Proceedings of SPIE, 2013, 8872: 887205.

[2] Koch G J, Barnes B W, Petros M, et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 2004, 43(26): 5092-5099.

[3] Engin D, Chuang T, Litvinovitch S, et al. Compact, highly efficient, single-frequency 25 W, 2051 nm Tm fiber-based MOPA for CO2 trace-gas laser space transmitter[J]. Proceedings of SPIE, 2017, 10406: 1040606.

[4] Singh U N, Kavaya M, Koch G, et al. Solid-state 2-micron laser transmitter advancement for wind and carbon dioxide measurements from ground, airborne, and space-based lidar systems[J]. Proceedings of SPIE, 2008, 7111: 711104.

[5] Singh U N, Walsh B M, Yu J R, et al. Twenty years of Tm∶Ho∶YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing[J]. Optical Materials Express, 2015, 5(4): 827-837.

[6] Wulfmeyer V, Randall M, Brewer A, et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 2000, 25(17): 1228-1230.

[7] Henriksson M, Tiihonen M, Pasiskevicius V, et al. ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source[J]. Optics Letters, 2006, 31(12): 1878-1880.

[8] Wang Q, Geng J H, Jiang S B. 2-μm fiber laser sources for sensing[J]. Optical Engineering, 2014, 53(6): 061609.

[9] Henriksson M, Tiihonen M, Pasiskevicius V, et al. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator[J]. Applied Physics B, 2007, 88(1): 37-41.

[10] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[11] Mamuschkin V. Olowinsky A, van der Straeten K, et al. Laser transmission welding of absorber-free thermoplastics using dynamic beam superposition[J]. Proceedings of SPIE, 2015, 9356: 93560Y.

[12] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 2005, 19(1): 25-31.

[13] TheisenD, OttV, Bernd HW, et al. CW high power IR-laser at 2 μm for minimally invasive surgery[C]//Therapeutic Laser Applications and Laser-Tissue Interactions, June 22, 2003, Munich, Germany. Washington, D.C.: OSA, 2003, 5142: 96- 100.

[14] Girard B, Yu D, Armstrong M R, et al. Effects of femtosecond laser irradiation on osseous tissues[J]. Lasers in Surgery and Medicine, 2007, 39(3): 273-285.

[15] Guo J, He G Y, Zhang B F, et al. Compact Efficient 2.1-μm intracavity MgO∶PPLN OPO with a VBG output coupler[J]. IEEE Photonics Technology Letters, 2015, 27(6): 573-576.

[16] Chen F, Yao B Q, Yuan C, et al. Diode-pumped single-frequency Tm∶YAG laser with double etalons[J]. Laser Physics, 2011, 21(5): 851-854.

[17] Gao C, Wang R, Lin Z, et al. 2 μm single-frequency Tm∶YAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Applied Physics B, 2012, 107(1): 67-70.

[18] Wang L, Gao C Q, Gao M W, et al. Resonantly pumped monolithic nonplanar Ho∶YAG ring laser with high-power single-frequency laser output at 2122 nm[J]. Optics Express, 2013, 21(8): 9541-9546.

[19] Na Q X, Gao C Q, Wang Q, et al. 1 kHz single-frequency 2.09 μm Ho∶YAG ring laser[J]. Applied Optics, 2017, 56(25): 7075-7078.

[20] 李梦龙, 高龙, 史文宗, 等. 全固态单频激光器研究进展[J]. 激光与光电子学进展, 2016, 53(8): 080003.

    Li M L, Gao L, Shi W Z, et al. Progress in all-solid-state single-frequency lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080003.

[21] Ju Y L, Liu W, Yao B Q, et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho∶YAG twisted-mode laser[J]. Chinese Optics Letters, 2015, 13(11): 111403.

[22] 王然, 高春清. 1.6 μm波段单频激光器技术研究进展[J]. 激光与光电子学进展, 2013, 50(8): 080006.

    Wang R, Gao C Q. Progress of 1.6 μm region single-frequency lasers[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080006.

[23] 冯滔, 张雪洁, 任志远, 等. 频率稳定的非平面环形腔激光器[J]. 光学学报, 2013, 33(10): 1014001.

    Feng T, Zhang X J, Ren Z Y, et al. Frequency stabilization laser based on non-planar ring oscillator[J]. Acta Optica Sinica, 2013, 33(10): 1014001.

[24] SchellhornM. High-energy, in-band pumped Ho∶LLF MOPA system[C]//Lasers, Sources, and Related Photonic Devices, January 29-February 1, 2012, San Diego, California, United States. Washington, D.C.: OSA, 2012: AW4A. 4.

[25] Yu J R, Singh U N, Barnes N P, et al. 125-mJ diode-pumped injection-seeded Ho∶Tm∶YLF laser[J]. Optics Letters, 1998, 23(10): 780-782.

[26] Chen F, Liu X L, Yu L X, et al. Diode-pumped single-frequency Tm∶GdVO4 laser at 1897.6 nm[J]. Laser Physics, 2012, 22(1): 152-154.

[27] Yang X T, Liu L, Zhang P, et al. A resonantly pumped single-longitudinal mode Ho∶Sc2SiO5 laser with two Fabry-Perot etalons[J]. Applied Sciences, 2017, 7(5): 434.

[28] Chen F, Cai M, Zhang Y S. Room temperature diode-pumped single-frequency Tm∶LuYAG laser at 2023 nm[J]. Proceedings of SPIE, 2018, 10844: 108440E.

[29] Ii Y J, Chen F. A single-longitudinal-mode Tm, Ho∶YAG laser[J]. Proceedings of SPIE, 2017, 10457: 104572T.

[30] Wu J, Wu Y F, Dai T Y, et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho∶YAP ring laser[J]. Optical Engineering, 2019, 58(1): 016116.

[31] Bai YX, Yu JR, PetrosM, et al. High repetition rate and frequency stabilized Ho∶YLF laser for CO2 differential absorption lidar[C]//Advanced Solid-State Photonics, February 1-4, 2009, Denver, Colorado, United States. Washington, D.C.: OSA, 2009: WB22.

[32] Dai T Y, Ju Y L, Yao B Q, et al. Single-frequency, Q-switched Ho∶YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho∶YAG laser[J]. Optics Letters, 2012, 37(11): 1850-1852.

[33] Dai T Y, Ju Y L, Duan X M, et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho∶YAlO3 laser at 2, 118 nm[J]. Applied Physics B, 2013, 111(1): 89-92.

[34] Hemmer M, Sánchez D, Jelínek M, et al. 2-μm wavelength, high-energy Ho∶YLF chirped-pulse amplifier for mid-infrared OPCPA[J]. Optics Letters, 2015, 40(4): 451-454.

[35] Gibert F, Edouart D, Cénac C, et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 2015, 40(13): 3093-3096.

[36] Zhang Y X, Gao C Q, Wang Q, et al. Single-frequency, injection-seeded Q-switched Ho∶YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD[J]. Optics Express, 2016, 24(24): 27805-27811.

[37] Wang Q, Gao C Q, Na Q X, et al. Single-frequency injection-seeded Q-switched Ho∶YAG laser[J]. Applied Physics Express, 2017, 10(4): 042701.

[38] Dai T Y, Wang Y P, Wu X S, et al. An injection-seeded Q-switched Ho∶YLF laser by a tunable single-longitudinal-mode Tm, Ho∶YLF laser at 2050.96 nm[J]. Optics & Laser Technology, 2018, 106: 7-11.

[39] Zhang Y X, Gao C Q, Wang Q, et al. High-repetition-rate single-frequency Ho∶YAG MOPA system[J]. Applied Optics, 2018, 57(15): 4222-4227.

[40] Zhang Y X, Gao C Q, Wang Q, et al. High-energy, stable single-frequency Ho∶YAG ceramic amplifier system[J]. Applied Optics, 2017, 56(34): 9531-9535.

[41] Gibert F, Pellegrino J, Edouart D, et al. 2-μm double-pulse single-frequency Tm∶fiber laser pumped Ho∶YLF laser for a space-borne CO2 lidar[J]. Applied Optics, 2018, 57(36): 10370-10379.

[42] Mizutani K, Ishii S, Aoki M, et al. 2 μm Doppler wind lidar with a Tm∶fiber-laser-pumped Ho∶YLF laser[J]. Optics Letters, 2018, 43(2): 202-205.

[43] Singh U N. Williams-Byrd J A, Barnes N P, et al. Diode-pumped 2-μm solid state lidar transmitter for wind measurements[J]. Proceedings of SPIE, 1997, 3104: 173-178.

[44] Singh U N. Development of high-pulse energy Ho∶Tm∶YLF coherent transmitters[J]. Proceedings of SPIE, 1998, 3380: 70-74.

[45] Koch G J, Petros M, Yu J R, et al. Precise wavelength control of a single-frequency pulsed Ho∶Tm∶YLF laser[J]. Applied Optics, 2002, 41(9): 1718-1721.

[46] Trieu B, Yu J R, Petros M, et al. Design of a totally conductively cooled diode-pumped 2 μm-laser amplifier[J]. Proceedings of SPIE, 2005, 5887: 58870M.

[47] Yu J R, Trieu B C, Modlin E A, et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 2006, 31(4): 462-464.

[48] Strauss H J, Koen W, Bollig C, et al. Ho∶YLF & Ho∶LuLF slab amplifier system delivering 200 mJ, 2 μm single-frequency pulses[J]. Optics Express, 2011, 19(15): 13974-13979.

[49] Strauss H J, Preussler D. Esser M J D, et al. 330 mJ single-frequency Ho∶YLF slab amplifier[J]. Optics Letters, 2013, 38(7): 1022-1024.

[50] Shu S J, Yu T, Liu R T, et al. Diode-side-pumped AO Q-switched Tm, Ho∶LuLF laser[J]. Chinese Optics Letters, 2011, 9(9): 091407.

[51] 舒仕江, 余婷, 臧华国, 等. 2 μm激光二极管侧面泵浦种子注入固体激光器[J]. 红外与激光工程, 2011, 40(8): 1442-1447.

    Shu S J, Yu T, Zang H G, et al. 2 μm diode-side-pumped injection-seeded solid-state laser[J]. Infrared and Laser Engineering, 2011, 40(8): 1442-1447.

[52] Liu Q, Yan X P, Fu X, et al. 183 W TEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz[J]. Optics Express, 2009, 17(7): 5636-5644.

陈忆兰, 朱小磊, 张俊旋, 刘继桥, 陈卫标. 单频2 μm波段全固态脉冲激光器技术进展[J]. 激光与光电子学进展, 2020, 57(5): 050006. Yilan Chen, Xiaolei Zhu, Junxuan Zhang, Jiqiao Liu, Weibiao Chen. Development of Pulsed Single-Frequency 2 μm All-Solid-State Laser[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!