Photonics Research, 2018, 6 (6): 06000554, Published Online: Jul. 2, 2018  

Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals Download: 570次

Author Affiliations
1 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
2 Department of Electrical and Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055, China
3 Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Copy Citation Text

Junzi Li, Can Ren, Xin Qiu, Xiaodong Lin, Rui Chen, Cheng Yin, Tingchao He. Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals[J]. Photonics Research, 2018, 6(6): 06000554.

References

[1] T. He, Y. Gao, S. Sreejith, X. Tian, L. Liu, Y. Wang, H. Joshi, S. Z. F. Phua, S. Yao, X. Lin, Y. Zhao, A. C. Grimsdale, H. Sun. Biocompatible two-photon absorbing dipyridyldiketopyrrolopyrroles for metal-ion-mediated self-assembly modulation and fluorescence imaging. Adv. Opt. Mater., 2016, 4: 746-755.

[2] T. He, W. Hu, H. Shi, Q. Pan, X. Lin. Strong nonlinear optical phosphorescence from water-soluble polymer dots: towards the application of two-photon bioimaging. Dyes Pigm., 2015, 123: 218-221.

[3] J. Li, H. Dong, B. Xu, S. Zhang, Z. Cai, J. Wang, L. Zhang. CsPbBr3 perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers. Photon. Res., 2017, 5: 457-460.

[4] S. Lu, Y. Ge, Z. Sun, Z. Huang, R. Cao, C. Zhao, S. Wen, D. J. Li, H. Zhang. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus. Photon. Res., 2016, 4: 286-292.

[5] T. He, S. Yao, J. Zhang, Y. Li, X. Li, J. Hu, R. Chen, X. Lin. Strong multiphoton absorption properties of one styrylpyridinium salt in a highly polar solvent. Opt. Express, 2016, 24: 11091-11102.

[6] T. He, J. Li, C. Ren, S. Xiao, Y. Li, R. Chen, X. Lin. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals. Appl. Phys. Lett., 2017, 111: 211105.

[7] A. K. Mandal, S. Sreejith, T. He, S. K. Maji, X. Wang, S. L. Ong, J. Joseph, H. Sun, Y. Zhao. Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging. ACS Nano, 2015, 9: 4796-4805.

[8] Y. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir, H. D. Sun. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater., 2014, 26: 2954-2961.

[9] W. Hu, T. He, R. Jiang, J. Yin, L. Li, X. Lu, H. Zhao, L. Zhang, L. Huang, H. Sun, W. Huang, Q. Fan. Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy. Chem. Commun., 2017, 53: 1680-1683.

[10] T. He, P. C. Too, R. Chen, S. Chiba, H. Sun. Concise synthesis and two-photon-excited deep-blue emission of 1,8-diazapyrenes. Chem. Asian J., 2012, 7: 2090-2095.

[11] W. Hu, M. Xie, H. Zhao, Y. Tang, S. Yao, T. He, C. Ye, Q. Wang, X. Lu, W. Huang, Q. Fan. Nitric oxide activatable photosensitizer accompanying extremely elevated two-photon absorption for efficient fluorescence imaging and photodynamic therapy. Chem. Sci., 2018, 9: 999-1005.

[12] K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, T. Jiang. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett., 2016, 41: 3821-3824.

[13] Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett., 2016, 16: 448-453.

[14] J. Chen, K. Žídek, P. Chábera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett., 2017, 8: 2316-2321.

[15] Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc., 2016, 138: 3761-3768.

[16] X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, A. Pan. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res., 2017, 10: 3385-3395.

[17] W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, T. C. Sum. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun., 2017, 8: 15198.

[18] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 2015, 27: 7162-7167.

[19] M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.

[20] M. C. Brennan, J. Zinna, M. Kuno. Existence of a size-dependent Stokes shift in CsPbBr3 perovskite nanocrystals. ACS Energy Lett., 2017, 2: 1487-1488.

[21] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15: 3692-3696.

[22] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, L. M. Herz. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx. J. Phys. Chem. Lett., 2014, 5: 1300-1306.

[23] M. Zhang, H. Yu, M. Lyu, Q. Wang, J. Yun, L. Wang. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chem. Commun., 2014, 50: 11727-11730.

[24] J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, J. M. Hodgkiss. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater., 2017, 29: 3644-3652.

[25] N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett., 2016, 16: 2349-2362.

[26] G. S. He, L. S. Tan, Q. Zheng, P. N. Prasad. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev., 2008, 108: 1245-1330.

[27] G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard. Two-photon absorption and optical-limiting properties of novel organic compounds. Opt. Lett., 1995, 20: 435-437.

[28] H. Fan, L. Guo, K. Li, M. Wong, K. W. Cheah. Exceptionally strong multiphoton-excited blue photoluminescence and lasing from ladder-type oligo(p-phenylene)s. J. Am. Chem. Soc., 2012, 134: 7297-7300.

[29] P. L. Wu, X. Feng, H. L. Tam, M. S. Wong, K. W. Cheah. Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes. J. Am. Chem. Soc., 2009, 131: 886-887.

[30] M. Albota, D. Beljonne, J. Brédas, J. E. Ehrlich, J. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu. Design of organic molecules with large two-photon absorption cross sections. Science, 1998, 281: 1653-1656.

[31] V. V. Nikesh, A. Dharmadhikari, H. Ono, S. Nozaki, G. R. Kumar, S. Mahamuni. Optical nonlinearity of monodispersed, capped ZnS quantum particles. Appl. Phys. Lett., 2004, 84: 4602-4604.

[32] A. D. Lad, P. P. Kiran, D. More, G. R. Kumar, S. Mahamuni. Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures. Appl. Phys. Lett., 2008, 92: 043126.

[33] B. Guzelturk, A. L. Kanibolotsky, C. Orofino-Pena, N. Laurand, M. D. Dawson, P. J. Skabara, H. V. Demir. Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption. J. Mater. Chem. C, 2015, 3: 12018-12025.

[34] B. Zhao, X. Jia, J. Liu, X. Ma, H. Zhang, X. Wang, T. Wang. Synthesis and characterization of novel 1,4-bis(carbazolyl)benzene derivatives with blue-violet two-photon-excited fluorescence. Ind. Eng. Chem. Res., 2016, 55: 1801-1807.

[35] S. Liu, G. Chen, Y. Huang, S. Lin, Y. Zhang, M. He, W. Xiang, X. Liang. Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. J. Alloys Compd., 2017, 724: 889-896.

[36] W.-G. Lu, C. Chen, D. Han, L. Yao, J. Han, H. Zhong, Y. Wang. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: a comparison study using Z-scan technique. Adv. Opt. Mater., 2016, 4: 1732-1737.

[37] G. S. He, J. Zhu, A. Baev, M. Samoć, D. L. Frattarelli, N. Watanabe, A. Facchetti, H. Ågren, T. J. Marks, P. N. Prasad. Twisted π-system chromophores for all-optical switching. J. Am. Chem. Soc., 2011, 133: 6675-6680.

[38] R. Zhang, J. Fan, X. Zhang, H. Yu, H. Zhang, Y. Mai, T. Xu, J. Wang, H. J. Snaith. Nonlinear optical response of organic-inorganic halide perovskites. ACS Photon., 2016, 3: 371-377.

[39] G. I. Stegeman. Material figures of merit and implications to all-optical waveguide switching. Proc. SPIE, 1993, 1852: 75-89.

Junzi Li, Can Ren, Xin Qiu, Xiaodong Lin, Rui Chen, Cheng Yin, Tingchao He. Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals[J]. Photonics Research, 2018, 6(6): 06000554.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!