Photonics Research, 2019, 7 (6): 06000642, Published Online: May. 15, 2019  

Routing emission with a multi-channel nonreciprocal waveguide

Author Affiliations
1 School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
2 Research Center of Applied Electromagnetics, School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
3 e-mail: llliu@ntu.edu.sg
4 School of Physical Science and Technology, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
5 e-mail: dlgao@suda.edu.cn
Copy Citation Text

Hao Hu, Liangliang Liu, Xiao Hu, Dongjue Liu, Dongliang Gao. Routing emission with a multi-channel nonreciprocal waveguide[J]. Photonics Research, 2019, 7(6): 06000642.

References

[1] W. Y. Yin, W. Wan. Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab. Int. J. Infrared Millim. Waves, 1994, 15: 1263-1274.

[2] P. S. Epstein. Theory of wave propagation in a gyromagnetic medium. Rev. Mod. Phys., 1956, 28: 3-17.

[3] C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, T. S. Yeo. Routes to left-handed materials by magnetoelectric couplings. Phys. Rev. B, 2007, 75: 245214.

[4] E. Cojocaru. Modes in dielectric or ferrite gyrotropic slab and circular waveguides, longitudinally magnetized, with open and completely or partially filled wall. J. Opt. Soc. Am. B, 2010, 27: 1965-1977.

[5] F. Fan, S. Chen, X. H. Wang, S. J. Chang. Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens. Opt. Express, 2013, 21: 8614-8621.

[6] K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, R. W. Boyd. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 2017, 356: 1260-1264.

[7] X. Lin, Z. J. Wang, F. Gao, B. L. Zhang, H. S. Chen. Atomically thin nonreciprocal optical isolation. Sci. Rep., 2014, 4: 4190.

[8] T. S. Qiu, J. Wang, Y. F. Li, S. B. Qu. Circulator based on spoof surface plasmon polaritons. IEEE Antennas Wireless Propag. Lett., 2017, 16: 821-824.

[9] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljacic. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772-775.

[10] C. He, X. C. Sun, X. P. Liu, M. H. Lu, Y. Chen, L. Feng, Y. F. Chen. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. USA, 2016, 113: 4924-4928.

[11] F. R. Prudencio, M. G. Silveirinha. Asymmetric Cherenkov emission in a topological plasmonic waveguide. Phys. Rev. B, 2018, 98: 115136.

[12] GangarajS. A.HansonG. W.SilveirinhaM. G.ShastriK.AntezzaM.MonticoneF., “Truly unidirectional excitation and propagation of diffractionless surface plasmon-polaritons,” arXiv: 1811.00463 (2018).

[13] H. Hu, J. L. Zhang, S. A. Maier, Y. Luo. Enhancing third-harmonic generation with spatial nonlocality. ACS Photon., 2018, 5: 592-598.

[14] HouS.XieA.XieZ.TobingL. Y. M.ZhouJ.TjahjanaL.YuJ.HettiarachchiC.ZhangD.DangC.TeoE. H. T.BirowosutoM. D.WangH., “Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals,” ACS Photon. (2019), DOI: 10.1021/acsphotonics.8b01655.APCHD52330-4022

[15] J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, T. J. Cui. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep., 2015, 5: 8165.

[16] L. L. Liu, Z. Li, B. Z. Xu, C. Q. Gu, X. L. Chen, H. Y. Sun, Y. J. Zhou, Q. Qing, P. Shum, Y. Luo. Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide. IEEE Trans. Microwave Theory Tech., 2017, 65: 2008-2018.

[17] Z. F. Yu, G. Veronis, Z. Wang, S. H. Fan. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett., 2008, 100: 023902.

[18] Y. Kurokawa, H. T. Miyazaki. Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B, 2007, 75: 035411.

[19] S. R. K. Rodriguez. Classical and quantum distinctions between weak and strong coupling. Eur. J. Phys., 2016, 37: 025802.

[20] S. F. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. H. Cui, M. L. Brongersma, W. S. Cai. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat. Mater., 2015, 14: 807-811.

[21] A. K. Popov, I. S. Nefedov, S. A. Myslivets. Hyperbolic carbon nanoforest for phase matching of ordinary and backward electromagnetic waves: second harmonic generation. ACS Photon., 2017, 4: 1240-1244.

[22] G. X. Li, L. Wu, K. F. Li, S. M. Chen, C. Schlickriede, Z. J. Xu, S. Y. Huang, W. D. Li, Y. J. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, S. Zhang. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett., 2017, 17: 7974-7979.

[23] L. L. Liu, L. Wu, J. J. Zhang, Z. Li, B. L. Zhang, Y. Luo. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv. Sci., 2018, 5: 1800661.

[24] X. P. Hu, P. Xu, S. N. Zhu. Engineered quasi-phase-matching for laser techniques. Photon. Res., 2013, 1: 171-185.

[25] ErogluA., Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Springer, 2010), p. 31.

[26] J. X. Huang, H. Hu, Z. W. Wang, W. Y. Li, J. Cang, J. Q. Shen, H. Ye. Analysis of light-emission enhancement of low-efficiency quantum dots by plasmonic nano-particle. Opt. Express, 2016, 24: 8555-8573.

[27] J. Tao, Q. J. Wang, J. J. Zhang, Y. Luo. Reverse surface-polariton Cherenkov radiation. Sci. Rep., 2016, 6: 30704.

[28] L. Carletti, A. Locatelli, O. Stepanenko, G. Leo, C. De Angelis. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt. Express, 2015, 23: 26544-26550.

[29] M. Celebrano, X. F. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, M. Finazzi. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 2015, 10: 412-417.

[30] S. M. Hanham, A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier. Broadband terahertz plasmonic response of touching InSb disks. Adv. Mater., 2012, 24: Op226-Op230.

[31] J. R. Maack, N. A. Mortensen, M. Wubs. Size-dependent nonlocal effects in plasmonic semiconductor particles. Europhys. Lett., 2017, 119: 17003.

[32] CazzanelliM.BiancoF.GhulinyanM.PuckerG.ModottoD.WabnitzS.PigozzoF. M.OssiciniS.DegoliE.LuppiE.VeniardV.PavesiL., “Second-order nonlinear silicon photonics,” SPIE Newsroom (2012), DOI: 10.1117/2.1201203.004138.

[33] L. Marrucci. Spin gives direction. Nat. Phys., 2015, 11: 9-10.

[34] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, A. V. Zayats. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 2013, 340: 328-330.

[35] D. Gao, R. Shi, A. E. Miroshnichenko, L. Gao. Enhanced spin Hall effect of light in spheres with dual symmetry. Laser Photon. Rev., 2018, 12: 1800130.

[36] R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, L. Gao. Enhanced broadband spin Hall effects by core-shell nanoparticles. Opt. Express, 2019, 27: 4808-4817.

Hao Hu, Liangliang Liu, Xiao Hu, Dongjue Liu, Dongliang Gao. Routing emission with a multi-channel nonreciprocal waveguide[J]. Photonics Research, 2019, 7(6): 06000642.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!