Photonics Research, 2020, 8 (10): 10001586, Published Online: Sep. 23, 2020  

Design of a multichannel photonic crystal dielectric laser accelerator Download: 553次

Author Affiliations
1 Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2 SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Copy Citation Text

Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, Shanhui Fan. Design of a multichannel photonic crystal dielectric laser accelerator[J]. Photonics Research, 2020, 8(10): 10001586.

References

[1] V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, K. T. Phuoc. Principles and applications of compact laser-plasma accelerators. Nat. Phys., 2008, 4: 447-453.

[2] E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. D. Miller, F. X. Kärtner. Terahertz-driven linear electron acceleration. Nat. Commun., 2015, 6: 8486.

[3] D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, F. X. Kärtner. Segmented terahertz electron accelerator and manipulator (steam). Nat. Photonics, 2018, 12: 336-342.

[4] R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, R. B. Yoder. Dielectric laser accelerators. Rev. Mod. Phys., 2014, 86: 1337-1389.

[5] T. Plettner, P. Lu, R. Byer. Proposed few-optical cycle laser-driven particle accelerator structure. Phys. Rev. ST Accel. Beams, 2006, 9: 111301.

[6] E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, R. L. Byer. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature, 2013, 503: 91-94.

[7] J. Breuer, P. Hommelhoff. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett., 2013, 111: 134803.

[8] J. Breuer, J. McNeur, P. Hommelhoff. Dielectric laser acceleration of electrons in the vicinity of single and double grating structures-theory and simulations. J. Phys. B, 2014, 47: 234004.

[9] D. Cesar, J. Maxson, X. Shen, K. Wootton, S. Tan, R. England, P. Musumeci. Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser. Opt. Express, 2018, 26: 29216-29224.

[10] D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E. Threlkeld, R. England, A. Hanuka, I. Makasyuk, E. Peralta, K. P. Wootton, Z. Wu. High-field nonlinear optical response and phase control in a dielectric laser accelerator. Commun. Phys., 2018, 1: 46.

[11] K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer, R. J. England. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses. Opt. Lett., 2016, 41: 2696-2699.

[12] K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, J. S. Harris. Dielectric laser acceleration of sub-100  keV electrons with silicon dual-pillar grating structures. Opt. Lett., 2015, 40: 4344-4347.

[13] T. Hughes, G. Veronis, K. P. Wootton, R. J. England, S. Fan. Method for computationally efficient design of dielectric laser accelerator structures. Opt. Express, 2017, 25: 15414-15427.

[14] T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, S. Fan, R. J. England, Y. J. Lee, M. Qi. On-chip laser-power delivery system for dielectric laser accelerators. Phys. Rev. Appl., 2018, 9: 054017.

[15] T. W. Hughes, R. J. England, S. Fan. Reconfigurable photonic circuit for controlled power delivery to laser-driven accelerators on a chip. Phys. Rev. Appl., 2019, 11: 064014.

[16] S. Tan, Z. Zhao, K. Urbanek, T. Hughes, Y. J. Lee, S. Fan, J. S. Harris, R. L. Byer. Silicon nitride waveguide as a power delivery component for on-chip dielectric laser accelerators. Opt. Lett., 2019, 44: 335-338.

[17] Z. Zhao, T. W. Hughes, S. Tan, H. Deng, N. Sapra, R. J. England, J. Vuckovic, J. S. Harris, R. L. Byer, S. Fan. Design of a tapered slot waveguide dielectric laser accelerator for sub-relativistic electrons. Opt. Express, 2018, 26: 22801-22815.

[18] N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer, J. Vučković. On-chip integrated laser-driven particle accelerator. Science, 2020, 367: 79-83.

[19] U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, P. Hommelhoff. Alternating-phase focusing for dielectric-laser acceleration. Phys. Rev. Lett., 2018, 121: 214801.

[20] B. Naranjo, A. Valloni, S. Putterman, J. Rosenzweig. Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics. Phys. Rev. Lett., 2012, 109: 164803.

[21] K. Wootton, J. McNeur, K. Leedle. Dielectric laser accelerators: designs, experiments, and applications. Rev. Accel. Sci. Technol., 2016, 9: 105-126.

[22] A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England, K. Wootton. Flat electron beam sources for DLA accelerators. Nucl. Instrum. Methods Phys. Res. A, 2017, 865: 75-83.

[23] D. H. Whittum, S. G. Tantawi. Switched matrix accelerator. Rev. Sci. Instrum., 2001, 72: 73-91.

[24] WhittumD. H.TantawiS. G., “Active millimeter wave accelerator with parallel beams,” Technical Report SLAC-PUB-7845 (1998).

[25] ZimmermannF.HillM.WhittumD., “New concepts for a compact 5-TeV collider,” Technical Report SLAC-PUB-7856 (1998).

[26] X. E. Lin. Photonic band gap fiber accelerator. Phys. Rev. ST Accel. Beams, 2001, 4: 051301.

[27] B. M. Cowan. Three-dimensional dielectric photonic crystal structures for laser-driven acceleration. Phys. Rev. ST Accel. Beams, 2008, 11: 011301.

[28] K. J. Leedle, D. S. Black, Y. Miao, K. E. Urbanek, A. Ceballos, H. Deng, J. S. Harris, O. Solgaard, R. L. Byer. Phase-dependent laser acceleration of electrons with symmetrically driven silicon dual pillar gratings. Opt. Lett., 2018, 43: 2181-2184.

[29] ACHIP Collaboration, D. S. Black, K. J. Leedle, Y. Miao, U. Niedermayer, R. L. Byer, O. Solgaard. Laser-driven electron lensing in silicon microstructures. Phys. Rev. Lett., 2019, 122: 104801.

[30] JoannopoulosJ. D.JohnsonS. G.WinnJ. N.MeadeR. D., Photonic Crystals Molding the Flow of Light (Princeton University, 2008).

[31] U. Niedermayer, T. Egenolf, O. Boine-Frankenheim. Beam dynamics analysis of dielectric laser acceleration using a fast 6D tracking scheme. Phys. Rev. ST Accel. Beams, 2017, 20: 111302.

[32] ByerR. L., “Development of high-gradient dielectric laser-driven particle accelerator structures,” Technical Report DE-FG06-97ER41276 (Stanford University, 2013).

[33] Y. Wei, G. Xia, J. Smith, C. Welsch. Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators. Phys. Plasmas, 2017, 24: 073115.

[34] Y. Miao, D. S. Black, K. J. Leedle, Z. Zhao, H. Deng, A. Ceballos, R. L. Byer, J. S. Harris, O. Solgaard. Surface treatments of dielectric laser accelerators for increased laser-induced damage threshold. Opt. Lett., 2020, 45: 391-394.

[35] W. Shin, S. Fan. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys., 2012, 231: 3406-3431.

[36] LeeY. J., “Ultrafast laser-induced damage threshold of the optical materials in near-infrared region,” Master’s thesis (Purdue University, 2017).

[37] B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett., 1995, 74: 2248-2251.

[38] L. Schächter, R. L. Byer, R. H. Siemann. Optical accelerator: scaling laws and figures of merit. AIP Conf. Proc., 2002, 647: 310-323.

[39] R. Siemann. Energy efficiency of laser driven, structure based accelerators. Phys. Rev. ST Accel. Beams, 2004, 7: 061303.

[40] J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer, P. Hommelhoff. Elements of a dielectric laser accelerator. Optica, 2018, 5: 687-690.

[41] R. Tiberio, D. Carr, M. Rooks, S. Mihailov, F. Bilodeau, J. Albert, D. Stryckman, D. Johnson, K. Hill, A. McClelland, B. J. Hughes. Fabrication of electron beam generated, chirped, phase mask (1070.11–1070.66  nm) for fiber Bragg grating dispersion compensator. J. Vac. Sci. Technol. B, 1998, 16: 3237-3240.

[42] D. S. Black, U. Niedermayer, Y. Miao, Z. Zhao, O. Solgaard, R. L. Byer, K. J. Leedle. Net acceleration and direct measurement of attosecond electron pulses in a silicon dielectric laser accelerator. Phys. Rev. Lett., 2019, 123: 264802.

[43] D. P. Grote, E. Henestroza, J. W. Kwan. Design and simulation of a multibeamlet injector for a high current accelerator. Phys. Rev. ST Accel. Beams, 2003, 6: 014202.

[44] Y. Yang, A. Massuda, C. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, M. Soljačić. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys., 2018, 14: 894-899.

[45] N. Z. Zhao, I. A. Williamson, Z. Zhao, S. Boutami, S. Fan. Penetration depth reduction with plasmonic metafilms. ACS Photon., 2019, 6: 2049-2055.

[46] R. Sousa. Dose rate influence on deep dose deposition using a 6  MV X-ray beam from a linear accelerator. Braz. J. Phys., 2009, 39: 292-296.

[47] A. Tafel, S. Meier, J. Ristein, P. Hommelhoff. Femtosecond laser-induced electron emission from nanodiamond-coated tungsten needle tips. Phys. Rev. Lett., 2019, 123: 146802.

[48] C. Luo, M. Ibanescu, S. G. Johnson, J. Joannopoulos. Cerenkov radiation in photonic crystals. Science, 2003, 299: 368-371.

[49] CeballosA., “Silicon microstructures for electron acceleration,” in Advanced Accelerator Concepts Workshop (2014).

[50] C. M. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, R. L. Byer. Production and characterization of attosecond electron bunch trains. Phys. Rev. ST Accel. Beams, 2008, 11: 061301.

[51] N. Schönenberger, A. Mittelbach, P. Yousefi, J. McNeur, U. Niedermayer, P. Hommelhoff. Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett., 2019, 123: 264803.

Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, Shanhui Fan. Design of a multichannel photonic crystal dielectric laser accelerator[J]. Photonics Research, 2020, 8(10): 10001586.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!