Photonics Research, 2019, 7 (11): 11001306, Published Online: Oct. 30, 2019   

High-speed optical secure communication with external noise source and internal time-delayed feedback loop Download: 676次

Author Affiliations
National Engineering Laboratory for Next Generation Internet Access System (NGIA), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Copy Citation Text

Yudi Fu, Mengfan Cheng, Xingxing Jiang, Quan Yu, Linbojie Huang, Lei Deng, Deming Liu. High-speed optical secure communication with external noise source and internal time-delayed feedback loop[J]. Photonics Research, 2019, 7(11): 11001306.

References

[1] WuB.ShastriB. J.PrucnalP. R., “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, AkhgarB.ArabniaH., eds. (Elsevier, 2014), pp. 173183.

[2] E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, D. Sadot. Photonic-layer encryption and steganography over IM/DD communication system. Opt. Express, 2018, 26: 32691-32703.

[3] R. Lavrov, M. Jacquot, L. Larger. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications. IEEE J. Quantum Electron., 2010, 46: 1430-1435.

[4] TanizawaK.FutamiF., “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

[5] N. Jiang, A. Zhao, C. Xue, J. Tang, K. Qiu. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett., 2019, 44: 1536-1539.

[6] B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, P. R. Prucnal. Dispersion deployment and compensation for optical steganography based on noise. IEEE Photon. Technol. Lett., 2016, 28: 421-424.

[7] B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, P. R. Prucnal. Optical steganography based on amplified spontaneous emission noise. Opt. Express, 2013, 21: 2065-2071.

[8] B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, P. R. Prucnal. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise. Opt. Express, 2014, 22: 954-961.

[9] WuB.HuangY.ZhangS.ShastriB. J.PrucnalP. R., “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

[10] B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, P. R. Prucnal. Analog noise protected optical encryption with two-dimensional key space. Opt. Express, 2014, 22: 14568-14574.

[11] YuQ.ZhaoZ.DengL.ChengM.ZhangM.FuS.LiuD., “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 4751.

[12] S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, F. Jiang. Research on optical security based on simulated noise induced encryption scheme. J. Phys. Conf. Ser., 2019, 1176: 062059.

[13] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438: 343-346.

[14] M. R. Chatterjee, A. Mohamed, F. S. Almehmadi. Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos. Appl. Opt., 2018, 57: C1-C13.

[15] F. S. Almehmadi, M. R. Chatterjee. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation. Appl. Opt., 2015, 54: 195-203.

[16] F. S. Almehmadi, M. R. Chatterjee. Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos. Opt. Eng., 2014, 53: 126102.

[17] A. Mohamed, M. R. Chatterjee. Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos. Opt. Eng., 2019, 58: 036110.

[18] J. Ke, L. Yi, G. Xia, W. Hu. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett., 2018, 43: 1323-1326.

[19] D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, A. B. Wang. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser. Opt. Express, 2019, 27: 3065-3073.

[20] T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, W. S. Hu. Maximizing the security of chaotic optical communications. Opt. Express, 2016, 24: 23439-23449.

[21] V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, W. T. Rhodes. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations. Phys. Lett. A, 2003, 308: 54-60.

[22] V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, D. S. Citrin. Time delay identification in chaotic cryptosystems ruled by delay-differential equations. J. Opt. Technol., 2005, 72: 373-377.

[23] Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, X. Bao. Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback. Opt. Laser Technol., 2019, 109: 654-658.

[24] P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, G. Q. Xia. Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback. Opt. Commun., 2013, 286: 339-343.

[25] XueC.JiangN.LiG.WangC.LinS.LvY.QiuK., “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

[26] D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, A. Wang. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG. Opt. Express, 2017, 25: 10911-10924.

[27] R. M. Nguimdo, P. Colet, L. Larger, L. Pesquera. Digital key for chaos communication performing time delay concealment. Phys. Rev. Lett., 2011, 107: 034103.

[28] R. Nguimdo, P. Colet. Electro-optic phase chaos systems with an internal variable and a digital key. Opt. Express, 2012, 20: 25333-25344.

[29] C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, K. Qiu. Security-enhanced chaos communication with time-delay signature suppression and phase encryption. Opt. Lett., 2016, 41: 3690-3693.

[30] M. Cheng, L. Deng, H. Li, D. Liu. Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation. Opt. Express, 2014, 22: 5241-5251.

[31] N. Li, W. Pan, A. Locquet, D. S. Citrin. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett., 2015, 40: 4416-4419.

[32] P. Mu, W. Pan, L. Yan, B. Luo, N. Li, M. Xu. Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections. IEEE Photon. Technol. Lett., 2016, 28: 131-134.

[33] C. Cheng, Y. Chen, F. Lin. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express, 2015, 23: 2308-2319.

[34] A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, K. A. Shore. Optical heterodyne generation of high-dimensional and broadband white chaos. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 531-540.

[35] J. Wu, Z. Wu, G. Xia, G. Feng. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Opt. Express, 2012, 20: 1741-1753.

[36] N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, K. Qiu. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens. Opt. Express, 2017, 25: 14359-14367.

[37] M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, D. Liu. Time-delay concealment in a three-dimensional electro-optic chaos system. IEEE Photon. Technol. Lett., 2015, 27: 1030-1033.

[38] ZhaoA.JiangN.WangC.ZhangJ.QiuK., “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

[39] D. Rontani, E. Mercier, D. Wolfersberger, M. Sciamanna. Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback. Opt. Lett., 2016, 41: 4637-4640.

[40] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 2019, 27: 17859-17867.

[41] H. Kantz, E. Olbrich. Coarse grained dynamical entropies: investigation of high-entropic dynamical systems. Physica A, 2000, 280: 34-48.

[42] FuY.ChengM.JiangX.DengL.ZhangM.LiuD., “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 3640.

[43] H. Chi, X. Zou, J. Yao. Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Lightwave Technol., 2009, 27: 511-521.

[44] M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, X. Chen. Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain. Opt. Express, 2019, 27: 25953-25963.

[45] L. Yi, J. Ke, G. Xia, W. Hu. Phase chaos generation and security enhancement by introducing fine-controllable dispersion. J. Opt., 2018, 20: 024004.

[46] B. Romeira, F. Kong, W. Li, J. M. L. Figueiredo, J. Javaloyes, J. Yao. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol., 2014, 32: 3933-3942.

[47] R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, J. Dudley. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization. Phys. Rev. E, 2009, 80: 026207.

[48] Q. Li, D. Chen, Q. Bao, R. Zeng, M. Hu. Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay. Appl. Opt., 2019, 58: 1715-1722.

[49] M. Cheng, L. Deng, X. Gao, H. Li, M. Tang. Security-enhanced OFDM-PON using hybrid chaotic system. IEEE Photon. Technol. Lett., 2015, 27: 326-329.

[50] C. Wang, Y. Ji, H. Wang, L. Bai. Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches. IEEE Photon. J., 2018, 10: 7203415.

[51] Q. C. Zhao, H. X. Yin. Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels. Opt. Commun., 2012, 285: 693-698.

[52] N. Jiang, J. Wang, D. Liu, C. Xue, K. Qiu. Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing. J. Opt. Soc. Am. B, 2016, 33: 637-642.

Yudi Fu, Mengfan Cheng, Xingxing Jiang, Quan Yu, Linbojie Huang, Lei Deng, Deming Liu. High-speed optical secure communication with external noise source and internal time-delayed feedback loop[J]. Photonics Research, 2019, 7(11): 11001306.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!