中国激光, 2021, 48 (6): 0602201, 网络出版: 2021-03-09   

纳秒激光诱导超疏水硅橡胶表面微结构的分形特性 下载: 899次

Fractal Characteristics of Microstructures on a Superhydrophobic Silicone Rubber Surface Induced by a Nanosecond Laser
作者单位
1 湖北工业大学机械工程学院, 湖北 武汉 430068
2 湖北工业大学材料与化学工程学院, 湖北 武汉 430068
引用该论文

陈列, 文关棋, 郭飞, 胡涛, 刘顿. 纳秒激光诱导超疏水硅橡胶表面微结构的分形特性[J]. 中国激光, 2021, 48(6): 0602201.

Lie Chen, Guanqi Wen, Fei Guo, Tao Hu, Dun Liu. Fractal Characteristics of Microstructures on a Superhydrophobic Silicone Rubber Surface Induced by a Nanosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(6): 0602201.

参考文献

[1] 谢尊虎, 曾凡伟, 肖建斌. 硅橡胶性能及其研究进展[J]. 特种橡胶制品, 2011, 32(2): 69-72.

    Xie Z H, Zeng F W, Xiao J B. Properties and research progress of silicone rubber[J]. Special Purpose Rubber Products, 2011, 32(2): 69-72.

[2] 杨杰. 有机硅材料在航空工业的应用[J]. 化工设计通讯, 2019, 45(10): 64-96.

    Yang J. Application of silicone materials in aviation industry[J]. Chemical Engineering Design Communications, 2019, 45(10): 64-96.

[3] 彭磊. 硅橡胶在电力系统外绝缘中的应用研究[J]. 通信电源技术, 2019, 36(4): 23-24.

    Peng L. Application of silicone rubber in external insulation of power system[J]. Telecom Power Technology, 2019, 36(4): 23-24.

[4] Wang L, Gong Q H, Zhan S H, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35): 7729-7735.

[5] 邵俊, 赵耀明, 杨崇岭. 硅橡胶绝缘子的性能及其在高电压中的应用[J]. 高压电器, 2009, 45(5): 155-158.

    Shao J, Zhao Y M, Yang C L. Properties of silicone rubber of insulator and its application in high voltage transmission line[J]. High Voltage Apparatus, 2009, 45(5): 155-158.

[6] Seyedmehdi S A, Zhang H, Zhu J. Superhydrophobic RTV silicone rubber insulator coatings[J]. Applied Surface Science, 2012, 258(7): 2972-2976.

[7] 高松华, 周克省. CF4射频等离子体对硅橡胶绝缘子表面的疏水改性[J]. 高分子材料科学与工程, 2013, 29(8): 101-104,109.

    Gao S H, Zhou E Z. Hydrophobic modification on the surface of silicone rubber insulator by CF4 RF plasma[J]. Polymer Materials Science & Engineering, 2013, 29(8): 101-104,109.

[8] 林澄, 钟敏霖, 范培迅, 等. 皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J]. 中国激光, 2014, 41(9): 0903007.

    Lin C, Zhong M L, Fan P X, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese Journal of Lasers, 2014, 41(9): 0903007.

[9] 周培阳, 彭耀政, 黄泽铭, 等. 纳秒激光制备的超疏水表面及其液滴冲击性能[J]. 中国激光, 2020, 47(4): 0402012.

    Zhou P Y, Peng Y Z, Huang Z M, et al. Fabrication and droplet impact performance of superhydrophobic surfaces developed using nanosecond lasers[J]. Chinese Journal of Lasers, 2020, 47(4): 0402012.

[10] Fang Y, Yong J L, Chen F, et al. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1701245.

[11] Yang H, Xu K C, Xu C W, et al. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency[J]. Nanoscale Research Letters, 2019, 14(1): 1-10.

[12] Chen L, Wang X, Yang T, et al. Superhydrophobic micro-nano structures on silicone rubber by nanosecond laser processing[J]. Journal of Physics D: Applied Physics, 2018, 51(44): 445301.

[13] 曲爱兰, 程江, 杨卓如. 复合粒子涂膜表面疏水性能分形评价[J]. 无机化学学报, 2010, 26(4): 615-620.

    Qu A L, Cheng J, Yang Z R. Hydrophobicity on film surfaces with composite particles estimated by fractal theory[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(4): 615-620.

[14] Yadav R P, Kumar T, Baranwal V, et al. Fractal characterization and wettability of ion treated silicon surfaces[J]. Journal of Applied Physics, 2017, 121(5): 055301.

[15] 李小兵, 刘莹. 材料表面润湿性的控制与制备技术[J]. 材料工程, 2008, 36(4): 74-80.

    Li X B, Liu Y. Control and prepartion to wettability of material surfaces[J]. Journal of Materials Engineering, 2008, 36(4): 74-80.

[16] 葛世荣, 索双富. 表面轮廓分形维数计算方法的研究[J]. 摩擦学学报, 1997, 17(4): 354-362.

    Ge S R, Suo S F. The computation methods for the fractal dimension of surface profiles[J]. Tribology, 1997, 17(4): 354-362.

[17] Zhong L, Zeng F, Xu G X. Comparison of fractal dimension calculation methods for channel bed profiles[J]. Procedia Engineering, 2012, 28: 252-257.

[18] Yuan C Q, Li J, Yan X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles[J]. Wear, 2003, 255(1): 315-326.

陈列, 文关棋, 郭飞, 胡涛, 刘顿. 纳秒激光诱导超疏水硅橡胶表面微结构的分形特性[J]. 中国激光, 2021, 48(6): 0602201. Lie Chen, Guanqi Wen, Fei Guo, Tao Hu, Dun Liu. Fractal Characteristics of Microstructures on a Superhydrophobic Silicone Rubber Surface Induced by a Nanosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(6): 0602201.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!